A new solar panel design can efficiently convert light into electricity, while still allowing almost 80% of incoming light to pass through.
Category: sustainability – Page 244
Presently available in France, the “Electric As You Go” program is for private customers who wish to change their old vehicle to an affordable, sustainable one. Trying to break through ‘” the cost is too much to invest in an EV” scenario (which becomes more disputable each hour of each day), Stellantis introduced “Electric As You Go” and is promoting a more affordable long-term rental program dedicated to battery electric vehicles (BEVs).
The program claims it is efficiently designed to offer breakthrough competitive prices to Stellantis customers. The offer is starting in France and looks hopeful.
There is the customary but “limited” initial down payment and a monthly fee that starts from €110 per month plus a cost of 7 cents per kilometer with a 500 km minimum per month. This new offer frames itself as a breakthrough project. “The main goal of the program is to offer the opportunity to better adapt the total cost of the vehicle to its real use.”
National Hurricane Center data for Miami, Washington, D.C., and New York City show development happening in at-risk areas, even as climate change brings more frequent and intense storms.
Perovskites, mineral materials composed of calcium titanate, have been found to be valuable for the fabrication of high-performance solar cells. While teams of scientists and engineers worldwide have been developing and testing perovskite solar cells in laboratory settings, large-scale outdoor evaluations of these cells are still lacking.
Researchers at University of Rome Tor Vergata, the Hellenic Mediterranean University in Crete, BeDimensional S.p. A., Great Cell, the Italian Institute of Technology (IIT) and University of Siena have recently manufactured large-area perovskite solar panels engineered using two-dimensional (2D) materials. They then successfully integrated 9 of these solar panels into a stand-alone solar farm, located on the Greek island of Crete. This team’s findings, presented in a paper published in Nature Energy, could facilitate and inform the future large-scale implementation of perovskite solar cells.
“Our recent paper highlights our joint research efforts for the last 5 years in the upscaling of perovskite PVs, starting from lab cells to modules, panels and finally to a solar farm infrastructure,” Francesco Bonaccorso, one of the researchers who carried out the study, told to Tech Xplore. “This project was specifically developed in the context of the European Graphene Flagship initiative, which established a close collaboration between University Tor Vergata, BeDimensional S.p. A., GreatCell and Hellenic Mediterranean University, having both complementary and widely different skillsets.”
“This is a significant milestone in renewable technology production. From touch screen displays, biosensors, radio frequency identification tags, electric vehicle batteries, and more, the technology’s applications are vast,” said Stuart Jara, HydroGraph chief executive officer.
With growing possibilities for printed electronics every day, the need for conductive inks like graphene ink is on the rise. HydroGraph’s highly competitive cost and mass production method for high quality graphene opens up a wealth of opportunity for the practical applications of conductive ink patterns.
“Once the ink is made, it can then be deployed in regular inkjet printers to make small-scale, flexible electronics. This puts manufacturing capabilities into the reach of many, making it far more accessible,” said Dr. Chris Sorensen, HydroGraph vice president R&D.
Perovskite solar cells (PSCs) are promising solar technologies. Although low-cost wet processing has shown advantages in small-area PSC fabrication, the preparation of uniform charge transport layers with thickness of several nanometers from solution for meter-sized large area products is still challenging.
Recently, a research group led by Prof. LIU Shengzhong from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has developed a facile surface redox engineering (SRE) strategy for vacuum-deposited NiO x to match the slot-die-coated perovskite, and fabricated high-performance large-area perovskite submodules.
This work was published in Joule (“Surface redox engineering of vacuum-deposited NiO x for top-performance perovskite solar cells and modules”).
A new study finds that decarbonization pathways need to incorporate more efficient electric heating technologies and more renewable energy sources to minimize strain on the U.S. electric grid during increased electricity usage from heating in December and January. Otherwise, harmful fossil fuels will continue to power these seasonal spikes in energy demand.
Buildings’ direct fossil fuel consumption, burned in water heaters, furnaces, and other heating sources, accounts for nearly 10 percent of greenhouse gas emissions in the United States. Switching to an electric system that powers heating through renewable energy sources, rather than coal, oil, and natural gas—the process known as building electrification or building decarbonization—is a crucial step towards achieving global net-zero climate goals.
However, most building decarbonization models have not accounted for seasonal fluctuations in energy demand for heating or cooling. This makes it difficult to predict what an eventual switch to cleaner, all-electric heating in buildings could mean for the nation’s electrical grid, especially during peaks in energy use.
VinFast is an unknown Vietnamese automaker selling electric vehicles (EVs) in America. Top staffers hail from industry leaders such as BMW.
New structural battery pack design is evaluated by auto manufacturing expert.
Sandy and Cory give an update on the 4,680 Battery Pack from our Austin-Built Tesla Model Y.
If you like the content you’re seeing, please consider visiting our website or subscribing to our Patreon group for exclusive content.
Inserting a metal fluoride layer in multilayered perovskite-silicon tandem solar cells can stall charge recombination and enhance performance, KAUST researchers have found.
Tandem solar cells that combine perovskite and silicon-based subcells in one device are expected to better capture and convert sunlight into electricity than their conventional single-junction silicon analogs at a lower cost. However, when sunlight strikes the perovskite subcell, the resulting pairs of electrons and positively charged holes tend to recombine at the interface between perovskite and the electron-transport layer. Also, a mismatch between energy levels at this interface hinders electron separation within the cell. Cumulatively, these problems lower the maximum operating voltage available, or open-circuit voltage, of the tandem cells and limit device performance.
These performance issues can partially be solved by introducing a lithium fluoride layer between the perovskite and electron-transport layer, which usually comprises the electron-acceptor fullerene (C60). However, lithium salts readily liquify and diffuse through surfaces, which makes the devices unstable. “None of the devices have passed the standard test protocols of the International Electrotechnical Commission, prompting us to create an alternative,” says lead author Jiang Liu, a postdoc in Stefaan De Wolf’s group.