Circa 2020
The setup of lasers and mirrors effectively “solved” a problem far too complicated for even the largest traditional computer system.
Circa 2020
The setup of lasers and mirrors effectively “solved” a problem far too complicated for even the largest traditional computer system.
The EuroExa Supercomputer funded by the European Union will make use of technologies from a number of hardware powerhouses and aims for deployment as early as 2022.
“Enormous clouds of gas are pulled into galaxies and used in the process of making stars,” said co-lead author Deanne Fisher, associate professor at the Centre for Astrophysics and Supercomputing at Swinburne University in Australia.
On its way in it is made of hydrogen and helium. By using a new piece of equipment called the Keck Cosmic Web Imager, we were able to confirm that stars made from this fresh gas eventually drive a huge amount of material back out of the system, mainly through supernovas.
But this stuff is no longer nice and clean – it contains lots of other elements, including oxygen, carbon, and iron.
“We are thinking about volumes in millions.”
“We are thinking about volumes in millions, not the thousands that people talk about with quantum computers based on superconducting,” said Marcus Doherty, chief science officer.
Quantum Brilliance delivered its first system to the Pawsey Supercomputing Centre in Australia earlier this year and is beginning to ship to other commercial customers.
On Thursday, Tesla CEO Elon Musk unveiled the Tesla Bot, which runs on the same AI used in Tesla’s autonomous vehicles. This surprise reveal was shared at the end of Tesla’s AI Day presentation. Musk revealed very few details about the humanoid robot besides the fact that it is 5″ 8′ and weighs 125 pounds.
The Tesla Bot is to be built from lightweight materials, and its head will be fitted with the autopilot cameras used by Tesla’s vehicles for sensing the environment. The Bot will be operated by Tesla’s Full Self-Driving (FSD) computer.
As Tesla focuses on Artificial Intelligence (AI) upgrades for its electric vehicles, there has also been a focus on the Dojo supercomputer, which is intended to help train the EVs to navigate the streets without human assistance. Musk said that it only made sense to make the robot into a humanoid form and that it is intended to be friendly and help navigate through a world built for humans.
A team of Swiss researchers from Graubuenden University of Applied Sciences has broken the record for calculating the mathematical constant pi. It is now known to an incredible level of exactitude, hitting 62.8 trillion figures thanks to the work of a supercomputer.
Pi represents the ratio between the radius of a circle and its circumference. You may recognize the first 10 digits, π=3.141592653, though there is an infinite number of digits that follow that decimal point.
To write all of the digits for the new record out on A4 paper, you would need almost 35 billion sheets, equivalent to about 52 percent of the mass of the Empire State Building. Putting those pieces of paper head to toe they would extend for over 10 million kilometers (6.5 million miles).
At the center of galaxies, like our own Milky Way, lie massive black holes surrounded by spinning gas. Some shine brightly, with a continuous supply of fuel, while others go dormant for millions of years, only to reawaken with a serendipitous influx of gas. It remains largely a mystery how gas flows across the universe to feed these massive black holes.
UConn Assistant Professor of Physics Daniel Anglés-Alcázar, lead author on a paper published today in The Astrophysical Journal, addresses some of the questions surrounding these massive and enigmatic features of the universe by using new, high-powered simulations.
“Supermassive black holes play a key role in galaxy evolution and we are trying to understand how they grow at the centers of galaxies,” says Anglés-Alcázar. “This is very important not just because black holes are very interesting objects on their own, as sources of gravitational waves and all sorts of interesting stuff, but also because we need to understand what the central black holes are doing if we want to understand how galaxies evolve.”
No, it’s not forbidden to innovate, quite the opposite, but it’s always risky to do something different from what people are used to. Risk is the middle name of the bold, the builders of the future. Those who constantly face resistance from skeptics. Those who fail eight times and get up nine.
(Credit: Adobe Stock)
Fernando Pessoa’s “First you find it strange. Then you can’t get enough of it.” contained intolerable toxicity levels for Salazar’s Estado Novo (Portugal). When the level of difference increases, censorship follows. You can’t censor censorship (or can you?) when, deep down, it’s a matter of fear of difference. Yes, it’s fear! Fear of accepting/facing the unknown. Fear of change.
Sorry, we’re having trouble playing this video.
Learn More.
World Economic Forum.
Saving $100 billion in lost productivity over the next decade.
📕
Team develops simulator with 256 qubits, largest of its kind ever created.
A team of physicists from the Harvard-MIT Center for Ultracold Atoms and other universities has developed a special type of quantum computer known as a programmable quantum simulator capable of operating with 256 quantum bits, or “qubits.”
The system marks a major step toward building large-scale quantum machines that could be used to shed light on a host of complex quantum processes and eventually help bring about real-world breakthroughs in material science, communication technologies, finance, and many other fields, overcoming research hurdles that are beyond the capabilities of even the fastest supercomputers today. Qubits are the fundamental building blocks on which quantum computers run and the source of their massive processing power.