Menu

Blog

Archive for the ‘supercomputing’ category: Page 50

Feb 17, 2020

Nearing the Simulation Singularity: What Would Immersive Computing Mean to the Human Mentality?

Posted by in categories: internet, mobile phones, physics, robotics/AI, singularity, supercomputing

Moving ever closer to the Web v.5.0 – an immersive virtual playground of the Metaverse – would signify a paramount convergent moment that MIT’s Rizwan Virk calls ‘The Simulation Point’ and I prefer to call the ‘Simulation Singularity’. Those future virtual worlds could be wholly devised and “fine-tuned” with a possibility to encode different sets of “physical laws and constants” for our enjoyment and exploration.


We are in the “kindergarten of godlings” right now. One could easily envision that with exponential development of AI-powered multisensory immersive technologies, by the mid-2030s most of us could immerse in “real virtualities” akin to lifestyles of today’s billionaires. Give it another couple of decades, each of us might opt to create and run their own virtual universe with [simulated] physics indistinguishable from the physics of our world. Or, you can always “fine-tune” the rule set, or tweak historical scenarios at will.

How can we be so certain about the Simulation Singularity circa 2035? By our very nature, we humans are linear thinkers. We evolved to estimate a distance from the predator or to the prey, and advanced mathematics is only a recent evolutionary addition. This is why it’s so difficult even for a modern man to grasp the power of exponentials. 40 steps in linear progression is just 40 steps away; 40 steps in exponential progression is a cool trillion (with a T) – it will take you 3 times from Earth to the Sun and back to Earth.

Continue reading “Nearing the Simulation Singularity: What Would Immersive Computing Mean to the Human Mentality?” »

Feb 10, 2020

Don’t fear Intelligent Machines. Work with them: Kasparov

Posted by in categories: futurism, supercomputing

This story begins in 1985 when at age 22, I became the World Chess Champion after beating Anatoly Karpov.


We must face our fears if we want to get the most out of technology — and we must conquer those fears if we want to get the best out of humanity, says Garry Kasparov. One of the greatest chess players in history, Kasparov lost a memorable match to IBM supercomputer Deep Blue in 1997. Now he shares his vision for a future where intelligent machines help us turn our grandest dreams into reality.

Continue reading “Don’t fear Intelligent Machines. Work with them: Kasparov” »

Feb 3, 2020

Lawrence Livermore researchers release 3D protein structure predictions for the novel coronavirus

Posted by in categories: biotech/medical, robotics/AI, supercomputing

Amid mounting concern about a novel coronavirus spreading from China, Lawrence Livermore National Laboratory (LLNL) researchers have developed a preliminary set of predictive 3D protein structures of the virus to aid research efforts to combat the disease.

The models are based on the genomic sequence of the novel coronavirus and a protein found in the virus that causes Severe Acute Respiratory Syndrome (SARS), which closely resembles the new virus.

The researchers plan to use the models to accelerate countermeasure design, using a combination of machine learning, biological experiments and simulation on supercomputers.

Continue reading “Lawrence Livermore researchers release 3D protein structure predictions for the novel coronavirus” »

Jan 28, 2020

Quantum computers offer another look at classic physics concepts

Posted by in categories: particle physics, quantum physics, supercomputing

“Think what we can do if we teach a quantum computer to do statistical mechanics,” posed Michael McGuigan, a computational scientist with the Computational Science Initiative at the U.S. Department of Energy’s Brookhaven National Laboratory.

At the time, McGuigan was reflecting on Ludwig Boltzmann and how the renowned physicist had to vigorously defend his theories of . Boltzmann, who proffered his ideas about how atomic properties determine physical properties of matter in the late 19th century, had one extraordinarily huge hurdle: atoms were not even proven to exist at the time. Fatigue and discouragement stemming from his peers not accepting his views on atoms and physics forever haunted Boltzmann.

Today, Boltzmann’s factor, which calculates the probability that a system of particles can be found in a specific energy state relative to zero energy, is widely used in physics. For example, Boltzmann’s factor is used to perform calculations on the world’s largest supercomputers to study the behavior of atoms, molecules, and the quark “soup” discovered using facilities such as the Relativistic Heavy Ion Collider located at Brookhaven Lab and the Large Hadron Collider at CERN.

Jan 23, 2020

AlphaGo Zero: Google DeepMind supercomputer learns 3,000 years of human knowledge in 40 days

Posted by in categories: robotics/AI, supercomputing

Circa 2017


Thousands of years of human knowledge has been learned and surpassed by the world’s smartest computer in just 40 days, a breakthrough hailed as one of the greatest advances ever in artificial intelligence.

Google DeepMind amazed the world last year when its AI programme AlphaGo beat world champion Lee Sedol at Go, an ancient and complex game of strategy and intuition which many believed could never be cracked by a machine.

Continue reading “AlphaGo Zero: Google DeepMind supercomputer learns 3,000 years of human knowledge in 40 days” »

Jan 17, 2020

Google’s Sycamore beats top supercomputer to achieve ‘quantum supremacy’

Posted by in categories: quantum physics, supercomputing

The achievement is an important milestone in quantum computing, Google’s scientists said.

Jan 16, 2020

AI-Designed ‘Living Robots’ Crawl, Heal Themselves

Posted by in categories: biotech/medical, robotics/AI, supercomputing

https://youtube.com/watch?v=M18nPjLZrMA

Biological organisms have certain useful attributes that synthetic robots do not, such as the abilities to heal, adapt to new situations, and reproduce. Yet molding biological tissues into robots or tools has been exceptionally difficult to do: Experimental techniques, such as altering a genome to make a microbe perform a specific task, are hard to control and not scalable.

Now, a team of scientists at the University of Vermont and Tufts University in Massachusetts has used a supercomputer to design novel lifeforms with specific functions, then built those organisms out of frog cells.

Continue reading “AI-Designed ‘Living Robots’ Crawl, Heal Themselves” »

Dec 24, 2019

First chip-to-chip quantum teleportation harnessing silicon photonic chip fabrication

Posted by in categories: internet, particle physics, quantum physics, supercomputing

The development of technologies which can process information based on the laws of quantum physics are predicted to have profound impacts on modern society.

For example, quantum computers may hold the key to solving problems that are too complex for today’s most powerful supercomputers, and a quantum internet could ultimately protect the worlds information from malicious attacks.

However, these technologies all rely on “,” which is typically encoded in single quantum particles that are extremely difficult to control and measure.

Dec 17, 2019

Google claimed quantum supremacy in 2019 — and sparked controversy

Posted by in categories: quantum physics, supercomputing

Google’s quantum computer outperformed the most powerful supercomputer on a task, the company reported. But some scientists aren’t fully convinced.

Nov 8, 2019

Google’s Sycamore breakthrough doesn’t spell the end for China’s hopes of winning quantum computer race

Posted by in categories: quantum physics, supercomputing

After the US tech giant announced it had developed a chip that dramatically outperformed supercomputers, Chinese researchers remain confident they can find the ‘holy grail’ of technology.

Page 50 of 82First4748495051525354Last