Toggle light / dark theme

Technology for lab-grown eggs or sperm on brink of viability, UK fertility watchdog finds

Bolstered by Silicon Valley investment, scientists are making such rapid progress that lab-grown human eggs and sperm could be a reality within a decade, a meeting of the Human Fertilisation and Embryology Authority board heard last week.

In-vitro gametes (IVGs), eggs or sperm that are created in the lab from genetically reprogrammed skin or stem cells, are viewed as the holy grail of fertility research.

The technology promises to remove age barriers to conception and could pave the way for same-sex couples to have biological children together. It also poses unprecedented medical and ethical risks, which the HFEA now believes need to be considered in a proposed overhaul of fertility laws.

Brain Regions that Relieve Effects of Chronic Stress in Mice Differ based on Sex

Subtle activation of a small subset of neurons in one region of the brain can make male mice resilient to, and even reverse, the detrimental effects of chronic stress. The same is true for female mice, but in a totally different region of the brain.

Researchers at Penn State reported these findings in two studies published in the journal Molecular Psychiatry and said the results could help explain the efficacy, or lack thereof, of certain antidepressant drugs and inform the development of new drugs and therapies.

The team developed a protocol to continuously activate neurons that produce the signaling molecule somatostatin, which helps regulate several biological processes, in specific brain regions in mice. The researchers found that doing so in a region of the brain called the prelimbic cortex made male mice resilient to stress, but failed to do so in female mice.

Sex differences in brain structure are present from birth, research shows

Gray matter is made up of neuron cell bodies and dendrites and is responsible for processing and interpreting information, such as sensation, perception, learning, speech, and cognition. White matter is made up of axons, which are long nerve fibers that connect neurons together from different parts of the brain.

In the study, male brains tended to be greater in volume than female brains. When adjusted for total brain volume, female infants on average had significantly more , while on average had significantly more in their brains.

Yumnah Khan, a Ph.D. student at the Autism Research Center at the University of Cambridge, who led the study, said, Our study settles an age-old question of whether male and female brains differ at birth. We know there are differences in the brains of older children and adults, but our findings show that they are already present in the earliest days of life.

Four Clinical Trials We’re Watching That Could Change Medicine in 2025

Meanwhile, scientists dug into how psychedelics and MDMA fight off depression and post-traumatic stress disorders. The year was a relative setback for the psychedelic renaissance, with the FDA rejecting MDMA therapy. But the field is still gaining recognition for its therapeutic potential.

Then there’s lenacapavir, a shot that protects people from HIV. Named “breakthrough of the year” by Science, the shot completely protected African teenage girls and women against HIV infection. Another trial supported the results, showing the drug protected people who have sex with men at nearly 100 percent efficacy. The success stems from a new understanding of the protein “capsule” guarding the virus’ genetic material. Many other viruses have a similar makeup—meaning the strategy could help researchers design new drugs to fight them off too.

So, what’s poised to take the leap from breakthrough to clinical approval in 2025? Here’s what to expect in the year ahead.

Is Low Solar Energy Causing Reduction in Serotonin and Leading to the Obesity and Mental Health Crisis?

DOI: Abstract We are living in a historical period in respect to the deterioration in public health, as we experience the rise of the catastrophic obesity epidemic and mental health crisis in recent decades, despite the great efforts from the scientific and medical community to seek health solutions and to try to find cures to the enormous human suffering and economic costs resulting by this collapse in public health. This trend has reached such a critical level that it jeopardizes society when over 40% of the population is obese in the United States, suffering grave medical health conditions, even as the expenditure on public health is rising exponentially to over 20% of gross domestic product. This should point to a monumental failure in our fundamental understanding of basic human biology and health. This article suggests that our current Western reductionist scientific paradigm in both biology and medicine has proved impotent and failed us completely. Therefore, the current cultural health crises require a more holistic approach to human biology and health in terms of chronobiological trends. The emerging neuroscience of brain energy metabolism will be considered as a holistic model for understanding how solar cycles affect our civilization and drive our sex and growth hormones and neurotransmitters that shape both our physical and mental health.

Groundbreaking 21-Million Cell Study Revises Our Understanding of Aging

Aging happens in distinct stages marked by synchronized cellular changes across organs, as shown in Rockefeller’s largest-ever mammalian aging atlas. Their findings offer clues for targeting aging processes and reveal key age and sex differences in cellular dynamics.

If you compared photos of a maple tree taken in July and December, the difference would be striking: a vibrant green canopy in summer versus bare, stark branches in winter. What those images wouldn’t reveal is how the transformation unfolded—whether it was gradual or sudden. In reality, deciduous trees usually wait for environmental cues, such as changes in light or temperature, before shedding all their leaves within a brief span of one to two weeks.

When it comes to aging, we may be more like these trees than we realized.

The impact of inactivation of the GH/IGF axis during aging on healthspan

By Sher Bahadur Poudel & Shoshana Yakar et al.


Several mouse lines with congenital growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis disruption have shown improved health and extended lifespan. The current study investigated how inactivating this axis, specifically during aging, impacts the healthspan. We used a tamoxifen-inducible global GH receptor (GHR) knockout mouse model starting at 12 months and followed the mice until 24 months of age (iGHRKO12–24 mice). We found sex-and tissue-specific effects, with some being pro-aging and others anti-aging. Measuring an array of cytokines in serum revealed that inactivation of the GH/IGF-1 axis at 12 months did not affect systemic inflammation during aging. On the other hand, hypothalamic inflammation was significantly reduced in iGHRKO12–24 mice, evidenced by GFAP+ (glial fibrillary acidic protein, a marker of astrocytes) and Iba-1+ (a marker for microglia). Liver RNAseq analysis indicated feminization of the male transcriptome, with significant changes in the expression of monooxygenase, sulfotransferase, and solute-carrier-transporter gene clusters. Finally, we found impaired bone morphology, more pronounced in male iGHRKO12–24 mice and correlated with GH/IGF-1 inactivation onset age. We conclude that inhibiting the GH/IGF-1 axis during aging only partially preserves the beneficial healthspan effects observed with congenital GH deficiency.

Inactivating the GH axis during aging has sex-and tissue-specific effects on healthspan. Deleting the GH receptor (GHR) in the entire body at 12 months of age led to feminizing the male liver transcriptome, significantly altering the expression of p450 and sulfotransferase gene clusters. While GHR deletion during aging did not impact systemic inflammation, it was linked to reduced hypothalamic inflammation. Additionally, we observed impaired bone morphology, particularly in male mice, which correlated with the age at which GH/IGF-1 inactivation began. Our findings suggest that inhibiting the GH axis during aging only partially maintains the beneficial healthspan effects seen with congenital GH deficiency.

Sex differences in neuron protection could reveal Alzheimer’s target

Inhibiting TLR7, an immune signaling protein, may help preserve the protective layer surrounding nerve fibers in the brain during both Alzheimer’s disease and ordinary aging, suggests a study led by researchers at Weill Cornell Medicine. The research is published in the journal Science.

Most in vertebrates are encased in sheaths made largely of myelin, a protein that protects the fibers and greatly enhances the efficiency of their signal conduction. The destruction of myelin sheaths—demyelination—can occur in the context of brain inflammation and can lead to cognitive, movement and other neurological problems. The phenomenon is seen in multiple sclerosis (MS), Alzheimer’s, Parkinson’s and other neurological conditions, as well as in ordinary aging.

Demyelination-linked disorders often show sex differences, and in the study, the researchers looked for underlying mechanisms of demyelination that might help explain these differences. Their experiments in mouse models of Alzheimer’s uncovered TLR7 as a driver of inflammatory demyelination especially in males, but also showed that removing or inhibiting this immune protein can protect against demyelination in both males and females.

/* */