Toggle light / dark theme

The Defense Advanced Research Projects Agency launched a second iteration of its Tools Competition to discover artificial intelligence-enabled technologies that can aid data science and other forms of adult learning.

The agency said Monday that the new program aims to upskill and reskill adults in science, technology, engineering and mathematics and similarly complex areas, preparing them for the 21st century labor landscape.

The opportunity is open to digital learning platform experts, technologists, researchers, students and educators who can propose AI tools that can provide feature tutoring and self-directed learning. The resulting platform may leverage AI or large language models.

Over ten years ago, the Dark Energy Survey (DES) began mapping the universe to find evidence that could help us understand the nature of the mysterious phenomenon known as dark energy. I’m one of more than 100 contributing scientists that have helped produce the final DES measurement, which has just been released at the 243rd American Astronomical Society meeting in New Orleans.

Dark energy is estimated to make up nearly 70% of the , yet we still don’t understand what it is. While its nature remains mysterious, the impact of dark energy is felt on grand scales. Its primary effect is to drive the accelerating expansion of the universe.

The announcement in New Orleans may take us closer to a better understanding of this form of energy. Among other things, it gives us the opportunity to test our observations against an idea called the cosmological constant that was introduced by Albert Einstein in 1917 as a way of counteracting the effects of gravity in his equations to achieve a universe that was neither expanding nor contracting. Einstein later removed it from his calculations.

New discoveries in Tidal Disruption Events enhance our understanding of supermassive black holes and their properties.

A new study by Hebrew University is a significant breakthrough in understanding Tidal Disruption Events (TDEs) involving supermassive black holes. The new simulations, for the first time ever, accurately replicate the entire sequence of a TDE from stellar disruption to the peak luminosity of the resulting flare. This study has unveiled a previously unknown type of shockwave within TDEs, settling a longstanding debate about the energy source of the brightest phases in these events. It confirms that shock dissipation powers the brightest weeks of a TDE flare, opening doors for future studies to utilize TDE observations as a means to measure essential properties of black holes and potentially test Einstein’s predictions in extreme gravitational environments.

The mysteries of supermassive black holes have long captivated astronomers, offering a glimpse into the deepest corners of our universe. Now, a new study led by Dr. Elad Steinberg and Dr. Nicholas C. Stone at the Racah Institute of Physics, The Hebrew University, sheds new light on these enigmatic cosmic entities.

Governor Kristi Noem has proposed a $6 million investment in a new Center for Quantum Information Science & Technology (C-QIST) in her recommended budget for the upcoming fiscal year.

According to details from the proposed budget, the center, a collaborative effort between Dakota State University, South Dakota School of Mines & Technology, South Dakota State University, and the University of South Dakota, aims to position the state as a leader in this emerging field with the potential to revolutionize everything from national security to healthcare.

The governor mentioned the potential of quantum computers to solve intractable problems as a reason for pursuing a quantum computing center, according to South Dakota Searchlight.

A material that doesn’t just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests.

Researchers at Delft University of Technology, led by assistant professor Richard Norte, have unveiled a remarkable new material with the potential to impact the world of material science: amorphous silicon carbide (a-SiC).

Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.