Toggle light / dark theme

Atomic Spray Painting Transforms Material Science for Greener Tech

Researchers have developed a technique called “atomic spray painting” using molecular beam epitaxy to strain-tune potassium niobate, enhancing its ferroelectric properties.

This method allows precise manipulation of material properties, with potential applications in green technologies, quantum computing, and space exploration.

Material Strain Tuning

Inside the Nano-Universe: New 3D X-Ray Imaging Transforms Material Science

A cutting-edge X-ray method reveals the 3D orientation of nanoscale material structures, offering fresh insights into their functionality.

Researchers at the Swiss Light Source (SLS) have developed a groundbreaking technique called X-ray linear dichroic orientation tomography (XL-DOT). This method reveals the three-dimensional arrangement of a material’s structural building blocks at the nanoscale. Its first application focused on a polycrystalline catalyst, enabling scientists to visualize crystal grains, grain boundaries, and defects—critical features that influence catalyst performance. Beyond catalysis, XL-DOT offers unprecedented insights into the structure of various functional materials used in information technology, energy storage, and biomedical applications.