Toggle light / dark theme

In an era of medical care that is increasingly aiming at more targeted medication therapies, more individual therapies and more effective therapies, doctors and scientists want to be able to introduce molecules to the biological system to undertake specific actions.

Examples are and , which for widespread use need to be both effective and inexpensive. In service of this goal, a trio of researchers has used machine learning to design a way to remove molecules inside a molecular cage. Their study is published in Physical Review Letters.

The research, whose lead author is Ryan K. Krueger of Harvard University, but to which each co-author contributed equally, uses differentiable to design complex reactions to direct the system to specific outcomes.

Introduction to O1 Models: The O1 series represents a shift from quick, intuitive thinking to slower, more deliberate reasoning. These models are designed to handle complex problems by thoroughly analyzing multiple data sets and reasoning through various dimensions of a problem.

#Microsoft #MicrosoftAzure

Stanford and Seoul National University researchers have developed an artificial sensory nerve system that can activate the twitch reflex in a cockroach and identify letters in the Braille alphabet.

The work, reported May 31 in Science, is a step toward creating artificial skin for prosthetic limbs, to restore sensation to amputees and, perhaps, one day give robots some type of reflex capability.

“We take skin for granted but it’s a complex sensing, signaling and decision-making system,” said Zhenan Bao, a professor of chemical engineering and one of the senior authors. “This artificial sensory nerve system is a step toward making skin-like sensory neural networks for all sorts of applications.”

Researchers at the University of Michigan discovered a way to produce bright, twisted light using technology akin to an Edison bulb.

This breakthrough revisits the principles of blackbody radiation, offering the potential for advanced robotic vision systems capable of distinguishing subtle variations in light properties, such as those emitted by living organisms or objects.

Bright, twisted light: a surprising innovation.

Although each condition occurs in a small number of individuals, collectively these diseases exert a staggering human and economic toll because they affect some 300 million people worldwide. Yet, with a mere 5 to 7 percent of these conditions having an FDA-approved drug, they remain largely untreated or undertreated.

Developing new medicines represents a daunting challenge, but a new artificial intelligence tool can propel the discovery of new therapies from existing medicines, offering hope for patients with rare and neglected conditions and for the clinicians who treat them.

The AI model, called TxGNN, is the first one developed specifically to identify drug candidates for rare diseases and conditions with no treatments.


Identifies possible therapies for thousands of diseases, including ones with no current treatments.

Out the free AMD loaner offer. Test the Ryzen PRO laptops yourself and experience the benefits they can bring to your business:
https://tinyurl.com/222dzww9

The Paper:
Indium Selenide breakthrough ➜ https://www.nature.com/articles/s41586-024-08156-8

Timestamps.
00:00 — New Semiconductor.
04:26 — How it works.
07:23 — Outlook and Alternatives.
11:30 — Top 5 Technologies of 2024

The videos I mentioned: