Toggle light / dark theme

Engineers develop new transparent electrode for infrared cameras

Infrared imaging helps us see things the human eye cannot. The technology—which can make visible body heat, gas leaks or water content, even through smoke or darkness—is used in military surveillance, search and rescue missions, health care applications and even in autonomous vehicles.

AI Co-Processors, NPUs and The Future of Cutting-Edge Artificial Intelligence

This week’s Fish Fry is all about AI inference, NPUs and the Tensilica NeuroEdge 130 AI Co-Processor! My guest is Amol Borkar from Cadence Design Systems and we are chatting about the latest trends in AI inferencing, why there is a greater need now for AI co-processors than ever before and the multitude of benefits that the Tensilica NeuroEdge 130 AI Co-Processor can bring to your next design.

Scientists give robots a sense of touch with fabric that mimics human skin

Robots excel at many things, but having a good sense of touch is not among them. Whether dropping items or pinching them too tightly, which crushes the object, many robots struggle with these basic skills that humans have mastered.

Over the years, scientists have equipped robots with cameras and other tools that enable the machines to better sense objects. But a simple and cost-effective solution remains elusive.

A new electronic textile (E-textile), under development at the University at Buffalo, aims to address this problem. The technology, described in a study published July 30 in Nature Communications, mimics how nerves in our hands sense pressure and slipping while grasping objects.

Nanodevice uses sound to sculpt light, paving the way for better displays and imaging

Light can behave in very unexpected ways when you squeeze it into small spaces. In a paper in the journal Science, Mark Brongersma, a professor of materials science and engineering at Stanford University, and doctoral candidate Skyler Selvin describe the novel way they have used sound to manipulate light that has been confined to gaps only a few nanometers across—allowing the researchers exquisite control over the color and intensity of light mechanically.

The findings could have broad implications in fields ranging from computer and virtual reality displays to 3D holographic imagery, optical communications, and even new ultrafast, light-based neural networks.

The new device is not the first to manipulate light with sound, but it is smaller and potentially more practical and powerful than conventional methods. From an engineering standpoint, acoustic waves are attractive because they can vibrate very fast, billions of times per second.

/* */