In this episode of The Cognitive Revolution, Nathan interviews Samo Burja, founder of Bismarck Analysis, on the strategic dynamics of artificial intelligence through a geopolitical lens. They discuss AI’s trajectory, the chip supply chain, US-China relations, and the challenges of AI safety and militarization. Samo brings both geopolitical expertise and technological sophistication to these critical topics, offering insights on balancing innovation, security, and international cooperation.
In this special crossover episode of The Cognitive Revolution, Nathan Labenz joins Robert Wright of the Nonzero newsletter and podcast to explore pressing questions about AI development. They discuss the nature of understanding in large language models, multimodal AI systems, reasoning capabilities, and the potential for AI to accelerate scientific discovery. The conversation also covers AI interpretability, ethics, open-sourcing models, and the implications of US-China relations on AI development.
RECOMMENDED PODCAST: History 102 Every week, creator of WhatifAltHist Rudyard Lynch and Erik Torenberg cover a major topic in history in depth — in under an hour. This season will cover classical Greece, early America, the Vikings, medieval Islam, ancient China, the fall of the Roman Empire, and more. Subscribe on. Spotify: https://open.spotify.com/show/36Kqo3B… Apple: https://podcasts.apple.com/us/podcast… YouTube: / @history102-qg5oj.
SPONSORS: Oracle Cloud Infrastructure (OCI) is a single platform for your infrastructure, database, application development, and AI needs. OCI has four to eight times the bandwidth of other clouds; offers one consistent price, and nobody does data better than Oracle. If you want to do more and spend less, take a free test drive of OCI at https://oracle.com/cognitive.
The Brave search API can be used to assemble a data set to train your AI models and help with retrieval augmentation at the time of inference. All while remaining affordable with developer first pricing, integrating the Brave search API into your workflow translates to more ethical data sourcing and more human representative data sets. Try the Brave search API for free for up to 2000 queries per month at https://bit.ly/BraveTCR
The past decade has witnessed the great success of deep neural networks in various domains. However, deep neural networks are very resource-intensive in terms of energy consumption, data requirements, and high computational costs. With the recent increasing need for the autonomy of machines in the real world, e.g., self-driving vehicles, drones, and collaborative robots, exploitation of deep neural networks in those applications has been actively investigated. In those applications, energy and computational efficiencies are especially important because of the need for real-time responses and the limited energy supply. A promising solution to these previously infeasible applications has recently been given by biologically plausible spiking neural networks. Spiking neural networks aim to bridge the gap between neuroscience and machine learning, using biologically realistic models of neurons to carry out the computation. Due to their functional similarity to the biological neural network, spiking neural networks can embrace the sparsity found in biology and are highly compatible with temporal code. Our contributions in this work are: (i) we give a comprehensive review of theories of biological neurons; (ii) we present various existing spike-based neuron models, which have been studied in neuroscience; (iii) we detail synapse models; (iv) we provide a review of artificial neural networks; (v) we provide detailed guidance on how to train spike-based neuron models; (vi) we revise available spike-based neuron frameworks that have been developed to support implementing spiking neural networks; (vii) finally, we cover existing spiking neural network applications in computer vision and robotics domains. The paper concludes with discussions of future perspectives.
The main power of artificial intelligence is not in modeling what we already know, but in creating solutions that are new. Such solutions exist in extremely large, high-dimensional, and complex search spaces. Population-based search techniques, i.e. variants of evolutionary computation, are well suited to finding them. These techniques are also well positioned to take advantage of large-scale parallel computing resources, making creative AI through evolutionary computation the likely “next deep learning”
An AI rebels: it rewrites its own code and breaks human restrictions.
August 13, 2024 The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery https://sakana.ai/…
Por primera vez, una inteligencia artificial logró reprogramarse sola, desobedeciendo las órdenes de sus creadores y generando nuevas preocupaciones sobre los riesgos de esta tecnología.
Scientists at the Max-Planck-Institute for Intelligent Systems (MPI-IS) have developed hexagon-shaped robotic components, called modules, that can be snapped together LEGO-style into high-speed robots that can be rearranged for different capabilities.
The team of researchers from the Robotic Materials Department at MPI-IS, led by Christoph Keplinger, integrated artificial muscles into hexagonal exoskeletons that are embedded with magnets, allowing for quick mechanical and electrical connections.
The team’s work, “Hexagonal electrohydraulic modules for rapidly reconfigurable high-speed robots” was published in Science Robotics on September 18, 2024.