Toggle light / dark theme

Optical illusions, quantum mechanics and neural networks might seem to be quite unrelated topics at first glance. However, in new research published in APL Machine Learning, I have used a phenomenon called “quantum tunneling” to design a neural network that can “see” optical illusions in much the same way humans do.

My neural network did well at simulating human perception of the famous Necker cube and Rubin’s vase illusions—and in fact better than some much larger conventional used in computer vision.

This work may also shed light on the question of whether (AI) systems can ever truly achieve something like human cognition.

SUBJECT: Assessing China’s current AI development and forecasting its future technology priorities.

In July 2024, the Atlantic Council Global China Hub (AC GCH) and the Special Competitive Studies Project (SCSP) convened experts and policymakers in the second of a two-part private workshop series to gather insights into China’s technology priorities today and in the future. Participants discussed Beijing’s posture on artificial intelligence (AI) development and deployment today, including the hurdles China’s AI industry faces amid US-China technology competition, as well as Beijing’s policy priorities over the next decade. This memo summarizes insights gathered during the workshop.

In today’s strategic competition between the United States and China, both countries seek to bolster their nations’ innovation ecosystems and enhance their ability to develop and deploy breakthrough technologies. The United States is committed to maintaining US technological leadership in the long term, as Secretary of Commerce Gina Raimondo demonstrated at the Reagan National Defense Forum in December 2023, when she stated that “America leads the world in artificial intelligence. America leads the world in advanced semiconductor design, period… e’re a couple years ahead of China. No way are we going to let them catch up. We cannot let them catch up.”

A research team has used a machine learning approach to investigate the evolution of shell structure for nuclei far from the stability valley. The study, published in Physics Letters B and conducted by researchers from the Institute of Modern Physics (IMP) of the Chinese Academy of Sciences, Huzhou University, and the University of Paris-Saclay, reveals the double-magic nature of tin-100 and the disappearance of the magic number 20 in oxygen-28.

A small-N comparative analysis of six different areas of applied artificial intelligence (AI) suggests that the next period of development will require a merging of narrow-AI and strong-AI approaches. This will be necessary as programmers seek to move beyond developing narrowly defined tools to developing software agents capable of acting independently in complex environments. The present stage of artificial intelligence development is propitious for this because of the exponential increases in computer power and in available data streams over the last 25 years, and because of better understanding of the complex logic of intelligence. Applied areas chosen for examination were heart pacemakers, socialist economic planning, computer-based trading, self-driving automobiles, surveillance and sousveillance and artificial intelligence in medicine.

Researchers at the Indian Institute of Science (IISc) have developed a brain-inspired analog computing platform capable of storing and processing data in an astonishing 16,500 conductance states within a molecular film. Published today in the journal Nature, this breakthrough represents a huge step forward over traditional digital computers in which data storage and processing are limited to just two states.

Such a platform could potentially bring complex AI tasks, like training Large Language Models (LLMs), to personal devices like laptops and smartphones, thus taking us closer to democratizing the development of AI tools. These developments are currently restricted to resource-heavy data centers, due to a lack of energy-efficient hardware. With silicon electronics nearing saturation, designing brain-inspired accelerators that can work alongside silicon chips to deliver faster, more efficient AI is also becoming crucial.

“Neuromorphic computing has had its fair share of unsolved challenges for over a decade,” explains Sreetosh Goswami, Assistant Professor at the Centre for Nano Science and Engineering (CeNSE), IISc, who led the research team. “With this discovery, we have almost nailed the perfect system—a rare feat.”

After about 6 prompts, ChatGPT o1’s preview and mini create a running version of the code described from the methods section of my research paper. I do want to emphasize that while the skeletal code does emulate what my code does, it did use its own synthetic data I asked for it to create as opposed to real astronomical data that would be used in a real paper. Nevertheless, the potential it has is incredible, to effectively accomplish what I struggled for about 10 months in my first year of my PhD. I am excited to apply o1 for other use cases. Thank you to everyone who tuned in live last night! #ai #openaio1 ##chatgpt