Toggle light / dark theme

Artificial intelligence finds 56 new gravitational lens candidates

A group of astronomers from the universities of Groningen, Naples and Bonn has developed a method that finds gravitational lenses in enormous piles of observations. The method is based on the same artificial intelligence algorithm that Google, Facebook and Tesla have been using in the last years. The researchers published their method and 56 new gravitational lens candidates in the November issue of Monthly Notices of the Royal Astronomical Society.

When a galaxy is hidden behind another galaxy, we can sometimes see the hidden one around the front system. This phenomenon is called a gravitational lens, because it emerges from Einstein’s general relativity theory which says that mass can bend light. Astronomers search for because they help in the research of dark matter.

The hunt for gravitational lenses is painstaking. Astronomers have to sort thousands of images. They are assisted by enthusiastic volunteers around the world. So far, the search was more or less in line with the availability of new images. But thanks to new observations with special telescopes that reflect large sections of the sky, millions of images are added. Humans cannot keep up with that pace.

Advanced artificial limbs mapped in the brain

EPFL scientists from the Center for Neuroprosthetics have used functional MRI to show how the brain re-maps motor and sensory pathways following targeted motor and sensory reinnervation (TMSR), a neuroprosthetic approach where residual limb nerves are rerouted towards intact muscles and skin regions to control a robotic limb.

Targeted motor and sensory reinnervation (TMSR) is a surgical procedure on patients with amputations that reroutes residual limb nerves towards intact muscles and skin in order to fit them with a limb prosthesis allowing unprecedented control. By its nature, TMSR changes the way the brain processes motor control and somatosensory input; however the detailed brain mechanisms have never been investigated before and the success of TMSR prostheses will depend on our ability to understand the ways the brain re-maps these pathways. Now, EPFL scientists have used ultra-high field 7 Tesla fMRI to show how TMSR affects upper-limb representations in the brains of patients with amputations, in particular in primary and the and regions processing more complex brain functions. The findings are published in Brain.

Targeted motor and sensory reinnervation (TMSR) is used to improve the control of upper limb prostheses. Residual nerves from the amputated limb are transferred to reinnervate and activate new muscle targets. This way, a patient fitted with a TMSR prosthetic “sends” motor commands to the re-innervated muscles, where his or her movement intentions are decoded and sent to the prosthetic limb. On the other hand, direct stimulation of the skin over the re-innervated muscles is sent back to the brain, inducing touch perception on the missing limb.

Researchers watch video images people are seeing, decoded from their fMRI brain scans in near-real-time

Purdue Engineering researchers have developed a system that can show what people are seeing in real-world videos, decoded from their fMRI brain scans — an advanced new form of “mind-reading” technology that could lead to new insights in brain function and to advanced AI systems.

The research builds on previous pioneering research at UC Berkeley’s Gallant Lab, which created a computer program in 2011 that translated fMRI brain-wave patterns into images that loosely mirrored a series of images being viewed.

Fully automated mining and factories on Earth a precursor of automation for space

Fully automated mining and factories and advanced robotics on the moon and asteroids could be leveraged for the exponential development of space. Here we review some of the developments of robotics for mining and factories on earth.

Robotic mining

Rio Tinto has 73 self driving trucks hauling iron ore 24 hours a day at four mines in Australia. They also use robotic rock drilling rigs. They are starting to use self driving trains that will be loaded and unloaded automatically. Driverless locomotives hae been tested extensively in 2017 and will be fully deployed by 2018.

The rights of synthetic lifeforms is the next great civil rights controversy

With artificial intelligence technology advancing rapidly, the world must consider how the law should apply to synthetic beings. Experts from the fields of AI, ethics, and government weigh in on the best path forward as we enter the age of self-aware robots.

Artificially intelligent (AI) robots and automated systems are already transforming society in a host of ways. Cars are creeping closer to Level 5 autonomy, factories are cutting costs by replacing human workers with robots, and AIs are even outperforming people in a number of traditionally white-collar professions.

DeepMind wants to find the next miracle material—experts just don’t know how they’ll pull it off

Artificial intelligence has historically over-promised and under-delivered. That routine leads to spurts of what those in the field call “hype”—outsized excitement about the potential of a core technology—followed after a few years and several million (or billion) dollars by crashing disappointment. In the end, we still don’t have the flying cars or realistic robot dogs we were promised.

But DeepMind’s AlphaGo, a star pupil in a time we’ll likely look back on as a golden age of AI research, has made a habit of blowing away experts’ notions of what’s possible. When DeepMind announced that the AI system could play Go on a professional level, masters of the game said it was too complex for any machine. They were wrong.

Now AlphaGo Zero, the AI’s latest iteration, is being set to tasks outside of the 19×19 Go board, according to DeepMind co-founder Demis Hassabis.

For the First Time Ever, a Robot Was Granted Citizenship

Clearly, the robot that previously made headlines because she said she’ll destroy humankind has since embraced “being human” to a certain extent.

Robot Citizenship

The decision to grant a robot citizenship adds to the growing debate of whether or not robots should be given rights similar to human beings. Earlier this year, the European Parliament proposed granting AI agents “personhood” status, giving them particular rights and responsibilities. While robot rights are in question, one expert suggests it should be possible for humans to torture robots.

/* */