Toggle light / dark theme

WASHINGTON: Three influential House lawmakers have asked DARPA in a Jan. 25 letter to review a robotic space repair program to see if it violates the National Space Policy by competing with private-sector efforts and to put the program on hold until the review is complete. The National Space Policy requires “that the government not build or buy systems that “preclude, discourage or compete” with commercial systems. Orbital ATK is building a system it believes competes directly with the DARPA initiative, known as Robotic Servicing of Geosynchronous Satellites.

It’s an intriguing program. DARPA’s goal is to develop robotic systems that can fix damaged satellites 22,000 miles up. In the words of the program web page, it would be designed to “make house calls in space.”

But Rep. Jim Bridenstine, one of the most active lawmakers on space issues today (and possibly the next head of NASA); Rep. Barbara Comstock, chair of the House Science, Space and Technology subcommittee on research and technology; and Rep. Rob Bishop, chair of the House Natural Resources Committee, signed a letter today asking Acting DARPA Director Steven Walker to review RSGS to ensure it complies with the National Space Policy’s requirement that the government not build or buy systems that “preclude, discourage or compete” with commercial systems.

Read more

The idea of using robots as the go-to for handling disaster situations isn’t new, but part of the problem has been how to build robots light enough to move about easily, yet are strong enough and tough enough to handle things like a smashed up nuclear reactor. As part of the answer, the Tokyo Institute of Technology and Bridgestone Tires have partnered to develop a new hydraulic robotic muscle that is lightweight, yet is five to ten times as strong as conventional electric motors and much more durable.

The locations in disaster areas where the responders are needed most urgently are often the ones that are the hardest to get to, precisely because they’ve been hit so hard. The 2011 Fukushima nuclear disaster is a prime example. Despite the damage done to the nuclear power plant by the sea wave that struck it, the subsequent explosion and meltdown could have been avoided had emergency workers been able to reach it with the right equipment in time to make repairs and re-power the cooling systems.

This is one reason why robots are so attractive. Autonomous robots have the potential to be able to move in and handle such emergencies, even to the point of using found tools and vehicles to accomplish tasks. Unfortunately, even though robots have a reputation for being steel giants possessing superhuman strength, mobile robots tend to be more on the weak and fragile side.

Read more

Here is a thought besides Robots with muscles; Robots working out in gyms or robot body builders. We’re already talking about Civil Rights for Robots and muscle for tough robots. Why not a gym along with the pyschologist for robots. And, don’t get me started on the whole substance abusing robots.


Video Friday is your weekly selection of awesome robot videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

Read more

Is Synbio the next big thing? Hmmm; depends. If we’re talking about ensuring that we have a solid foundation/ infrastructure (including platforms; etc.) on QC 1st then with the existing evolution and maturity of the fundamentals around Synbio as a 1st step; then accelerating the further maturity of Synbio into creating super humans and singularity? My answer is yes. If we’re not even considering that we need QC and just focused on Synbio only; my answer is No as QC will be required as a foundation for things like real Humanoid AI, cell circuited humans/ super humans, etc.


Why we might soon be buying silk, wood, and more fabricated out of genetic code.

Read more

The brain is the fattiest organ in your body made up of 60% fat, the dry part that is. 75% of your brain is actually water which houses 100,000 miles of blood vessels that use up 20% of all your oxygen and blood. It’s an amazing piece of hardware. Of all the moonshot projects out there, the ones that relate to augmenting the brain are perhaps the most fascinating. Companies like Kernel have actually succeeded in writing long-term memories to a chip – well, at least 80% of them. When that number hits 100%, the sky is the limit to what we can do with the brain.

If you want a graphic image of what the future holds, imagine a robotic arm on top of your table (no wires) moving its fingers or trying to grab something powered only by someone’s thought. After all those Terminator movies, this could be a bit creepy. You may not get Terminator at your doorstep just yet, but someone with neuroprosthesis might just be ringing your doorbell a few years from now.

Neuroprosthetics or neuroprosthesis is a field of biomedical engineering and neuroscience concerned with the development of neural prostheses which are a series of devices that can substitute your brain’s motor, sensory or cognitive functionality that might have been damaged as a result of an injury or a disease.

Read more

In Brief The time for machines to take over most of humanity’s work is rapidly approaching. The world is woefully unprepared to deal with the implications that automation will have over the coming decades. Universal basic income is just beginning to be discussed, and automation has the potential to displace much of the world’s workforce. Many decisions have to be made, and quickly, if we hope to keep pace with innovation.

On December 2nd, 1942, a team of scientists led by Enrico Fermi came back from lunch and watched as humanity created the first self-sustaining nuclear reaction inside a pile of bricks and wood underneath a football field at the University of Chicago. Known to history as Chicago Pile-1, it was celebrated in silence with a single bottle of Chianti, for those who were there understood exactly what it meant for humankind, without any need for words.

Now, something new has occurred that, again, quietly changed the world forever. Like a whispered word in a foreign language, it was quiet in that you may have heard it, but its full meaning may not have been comprehended. However, it’s vital we understand this new language, and what it’s increasingly telling us, for the ramifications are set to alter everything we take for granted about the way our globalized economy functions, and the ways in which we as humans exist within it.

Read more

Automation in the workplace has been one of the looming existential threats to American workers for years now. And with each new study published, the fear of robots, machines, and artificial intelligence coming to take our jobs ticks higher.

But a new report from McKinsey finds that the future of work and automation isn’t quite the zero-sum game when it comes to jobs as some perceive.

Right now, 51% of job activities could be automated with “currently demonstrated” technology, the McKinsey report says. The distinction is noteworthy: McKinsey isn’t saying half of all jobs can be automated with existing technology, but rather job tasks. Many jobs involve a blend of both the mundane and the intricate. Machines are excellent at handling rote, predictable tasks like repetitive physical labor and data collection and processing, making jobs like retail, foodservice, and manufacturing —a big theme in the 2016 campaign—most affected. As 51% of all working hours, these endangered activities make up $2.7 trillion in wages.

Read more