Toggle light / dark theme

“Machine-Learning Assisted Directed Evolution of Viral Vectors and Microbial Opsins for Minimally Invasive Neuroscience.” AI-4-Science Workshop, October 25, 2019 at Bechtel Residence Dining Hall, Caltech. Learn more about: — AI-4-science: https://www.ist.caltech.edu/ai4science/ — Events: https://www.ist.caltech.edu/events/ Produced in association with Caltech Academic Media Technologies. ©2019 California Institute of Technology.

Researchers from the Smart and Wireless Applications and Technologies Group (SWAT-UGR) have conducted two scientific studies aimed at answering a common question: understanding how electromagnetic waves propagate in the medium.

The increase in network speed opens the door to new possibilities, such as robotic surgery or virtual reality services.

A team of UGR researchers has examined the propagation of electromagnetic waves with the goal of enhancing the deployment of 5G and 6G networks. Additionally, the study results contribute to the development of Industry 4.0, which seeks to automate processes in factories using wireless technologies.

Researchers have developed a pH-responsive nanorobot system that changes confirmation in the tumor microenvironment to selectively kill cancer cells in mice.

Researchers at the Karolinska Institutet (Stockholm, Sweden) have recently developed a nanorobot system capable of killing cancer cells in mice. This system works by activating at lower pH, such as within the tumor microenvironment. It is hoped that this could serve as a proof-of-concept for similar stimulus-responsive nanorobotic approaches and introduce a new range of effective cancer therapeutics.

Certain membrane proteins capable of inducing apoptosis, a type of cell death, appear on the surface of both healthy and cancer cells. These proteins, often called death receptors, join and activate when in close proximity to each other. This closeness is induced by external factors binding to the cell surface.

A research team led by Professor Jang-Sik Lee from the Department of Materials Science and Engineering and the Department of Semiconductor Engineering at Pohang University of Science and Technology (POSTECH) has significantly enhanced the data storage capacity of ferroelectric memory devices. By utilizing hafnia-based ferroelectric materials and an innovative device structure, their findings, published on June 7 in the international journal Science Advances, mark a substantial advancement in memory technology.

With the exponential growth in data production and processing due to advancements in electronics and artificial intelligence (AI), the importance of data storage technologies has surged. NAND flash memory, one of the most prevalent technologies for mass data storage, can store more data in the same area by stacking cells in a three-dimensional structure rather than a planar one. However, this approach relies on charge traps to store data, which results in higher operating voltages and slower speeds.

Recently, hafnia-based ferroelectric memory has emerged as a promising next-generation memory technology. Hafnia (Hafnium oxide) enables ferroelectric memories to operate at low voltages and high speeds. However, a significant challenge has been the limited memory window for multilevel data storage.

David is one of the world’s best-known philosophers of mind and thought leaders on consciousness. I was a freshman at the University of Toronto when I first read some of his work. Since then, Chalmers has been one of the few philosophers (together with Nick Bostrom) who has written and spoken publicly about the Matrix simulation argument and the technological singularity. (See, for example, David’s presentation at the 2009 Singularity Summit or read his The Singularity: A Philosophical Analysis)

During our conversation with David, we discuss topics such as: how and why Chalmers got interested in philosophy; and his search to answer what he considers to be some of the biggest questions – issues such as the nature of reality, consciousness, and artificial intelligence; the fact that academia in general and philosophy, in particular, doesn’t seem to engage technology; our chances of surviving the technological singularity; the importance of Watson, the Turing Test and other benchmarks on the way to the singularity; consciousness, recursive self-improvement, and artificial intelligence; the ever-shrinking of the domain of solely human expertise; mind uploading and what he calls the hard problem of consciousness; the usefulness of philosophy and ethics; religion, immortality, and life-extension; reverse engineering long-dead people such as Ray Kurzweil’s father.

As always you can listen to or download the audio file above or scroll down and watch the video interview in full. To show your support you can write a review on iTunes, make a direct donation, or become a patron on Patreon.

Introducing the Qinglong humanoid robot with open-source AI, plus Tesla’s Optimus Gen 2 is shown for the first time ever in public. Meta HOT3D dataset is bringing robotic hands closer than ever before, plus China’s KLING is now available on a web app.

Deep Learning AI Specialization: https://imp.i384100.net/GET-STARTED
AI Marketplace: https://taimine.com/
Advanced Robotics, Drones, 3D Printers, \& AI Tech HERE: https://bit.ly/3wNxDyA

AI news timestamps:
0:00 Qinglong humanoid robot.
0:33 Specifications.
1:08 Performance.
1:33 AI development.
1:48 Future roadmap.
2:31 Tesla Optimus Gen 2
2:49 Key improvements.
3:23 Roadmap.
3:53 Meta HOT3D
5:10 KLING text to video web app.
5:44 Meta 3D Gen.
6:10 2 AI models.
7:10 EMU AI

#ai #robot #technology

With their ability to generate human-like language and complete a variety of tasks, generative AI has the potential to revolutionise the way we communicate, learn and work. But what other doors will this technology open for us, and how can we harness it to make great leaps in technology innovation? Have we finally done it? Have we cracked AI?

Join Professor Michael Wooldridge for a fascinating discussion on the possibilities and challenges of generative AI models, and their potential impact on societies of the future.

Michael Wooldridge is Director of Foundational AI Research and Turing AI World-Leading Researcher Fellow at The Alan Turing Institute. His work focuses on multi-agent systems and developing techniques for understanding the dynamics of multi-agent systems. His research draws on ideas from game theory, logic, computational complexity, and agent-based modelling. He has been an AI researcher for more than 30 years and has published over 400 scientific articles on the subject.

This lecture is part of a series of events — How AI broke the internet — that explores the various angles of large-language models and generative AI in the public eye.

Vending machines are an old charming piece of technology that supposedly makes the lives of people easier by making water, snacks and food in general readily available.


American Rounds says that it aims to redefine convenience in ammunition purchasing, as its ammo dispensers can be accessed round the clock.

The company’s website also promises a ‘hassle-free buying experience every time,’ and of a smooth transaction every time a prospective buyer reaches it.