Toggle light / dark theme

Scientists at the California Institute of Technology can now assess a person’s intelligence in moments with nothing more than a brain scan and an AI algorithm, university officials announced this summer.

Caltech researchers led by Ralph Adolphs, PhD, a professor of psychology, neuroscience and biology and chair of the Caltech Brain Imaging Center, said in a recent study that they, alongside colleagues at Cedars-Sinai Medical Center and the University of Salerno, were successfully able to predict IQ in hundreds of patients from fMRI scans of resting-state brain activity. The work is pending publication in the journal Philosophical Transactions of the Royal Society.

Adolphs and his team collected data from nearly 900 men and women for their research, all of whom were part of the National Institutes of Health (NIH)-driven Human Connectome Project. The researchers trained their machine learning algorithm on the complexities of the human brain by feeding the brain scans and intelligence scores of these hundreds of patients into the algorithm—something that took very little effort on the patients’ end.

Read more

Photographers already face an uphill battle in trying to preventing people from using their digital photos without permission. But Nvidia could make protecting photos online much harder with a new advancement in artificial intelligence that can automatically remove artifacts from a photograph, including text and watermarks, no matter how obtrusive they may be.

In previous advancements in automated image editing and manipulation, an AI powered by a deep learning neural network is trained on thousands of before and after example photos so that it knows what the desired output should look like. But this time, researchers at Nvidia, MIT, and Aalto University in Finland, managed to train an AI to remove noise, grain, and other visual artifacts by studying two different versions of a photo that both feature the visual defects. Fifty-thousand samples later, the AI can clean up photos better than a professional photo restorer.

Read more

Researchers used magnetically driven microrobots to carry cells to predetermined spots within living zebrafish and mice, they report in Science Robotics today (June 27). The authors propose using these hair-width gadgets as delivery vehicles in regenerative medicine and cell therapy.

The scientists used a computer model to work out the ideal dimensions for a microrobot; spiky, porous, spherical ones were deemed best for transporting living cells. They printed the devices using a 3D laser printer and coated the bots with nickel and titanium to make them magnetic and biocompatible, respectively. An external magnetic field applied to the animal then leads the microrobots.

To begin with, the research team tested the ability for the robots to transport cells through cell cultures, blood vessel–like microfluidic chips, and in vivo in zebrafish. Further, they used these microrobots to induce cancer at a specific location within mice by ferrying tumor cells to the spot. The team observed fluorescence at the target site as the labeled cancer cells proliferated.

Read more