Toggle light / dark theme

First step towards photonic quantum network

Advanced photonic nanostructures are well on their way to revolutionising quantum technology for quantum networks based on light. Researchers from the Niels Bohr Institute have now developed the first building blocks needed to construct complex quantum photonic circuits for quantum networks. This rapid development in quantum networks is highlighted in an article in the journal Nature.

Quantum technology based on light (photons) is called , while electronics is based on electrons. Photons (light particles) and electrons behave differently at the quantum level. A quantum entity is the smallest unit in the microscopic world. For example, photons are the fundamental constituent of light and electrons of electric current. Electrons are so-called fermions and can easily be isolated to conduct current one electron at a time. In contrast photons are bosons, which prefer to bunch together. But since information for quantum communication based on photonics is encoded in a single photon, it is necessary to emit and send them one at a time.

D-Wave’s $15 million quantum computer runs a staggering 2,000 qubits

For D-Wave, the path to quantum computers being widely accepted is similar to the history of today’s computers. The first chips came more than 30 years ago, and Microsoft’s Basic expanded the software infrastructure around PCs.

Quantum computers are a new type of computer that can be significantly faster than today’s PCs. They are still decades away from replacing PCs and going mainstream, but more advanced hardware and use models are still emerging.

“A lot of that is unfolding and will have a similar dramatic change in the computing landscape,” Vern Brownell, D-Wave’s CEO, said in an interview.

Is alien life EVERYWHERE? Claims it has become ‘fabric of the universe’

Interesting hypothesis…


Despite all that scientists now know, much of our universe still remains a mystery.

And according to a Columbia University astrophysicist, this could be because the physical laws of the cosmos are not as they seem.

Instead, the expert argues that our universe may be driven by the reassembled intelligence of an alien civilization – one so advanced that it transcribed itself into the quantum realm, allowing life to ‘disappear into ordinary physics.’

Physicists may have just manipulated ‘pure nothingness’

It’s one of those philosophical questions we occasionally ponder: What is nothing? Can nothing be something? If not, then how can something come from nothing?

If there’s one scientific field on the forefront of such conceptual paradoxes, it’s quantum theory. And in quantum theory, nothing actually is something … sort of.

See, according to quantum mechanics, even an empty vacuum is not really empty. It’s filled with strange virtual particles that blink in and out of existence in timespans too short to observe. Nothingness, on the quantum level, exists on a level of intuitive absurdity; a kind of existence that is paradoxical but, in some conceptual sense, necessary.

Route Monkey working with NQIT to develop transport & mobility algorithms for quantum computers

Nice and will be very useful for many in QC.


Scotland-based route optimization specialist Route Monkey, a unit of telematics and big data company Trakm8, is working on a new generation of transport and mobility algorithms for quantum computers.

Route Monkey already works with Heriot-Watt University in Edinburgh on creating and enhancing innovative algorithms for transport and travel (earlier post). The two are now joining forces with the Networked Quantum Information Technologies Hub (NQIT), led by the University of Oxford. Together, the three organizations will develop, test and commercialize quantum algorithms.

The leap forward in the capabilities offered by quantum computing opens up a whole new field. We can create algorithms that deliver even faster and more accurate answers, to ever more complex transport and mobility challenges.

—Colin Ferguson, Trakm8 Group’s Managing Director of Fleet and Optimization.

Quantum Foundation Combines Bitcoin and Ethereum to Create Qtum

Nice try; no faith it will succeed long term with QC.


Singapore-based Quantum Foundation announced that it is working on a new project called Qtum, which combines the technology of both bitcoin and ethereum to facilitate blockchain technology adoption for corporations. Qtum is an open-source blockchain project that aims to build smart contract functionalities that can be implemented at an enterprise level.

The initial financial backing of $1 million by several industry leaders is a testament to the validity of the technology that the Qtum project is creating but also demonstrates full faith in its team of developers. Early-stage angel investors in the project include ethereum co-founder Anthony Di Iorio, Fenbushi partner Bo Shen, and OKCoin CEO Star Xu, among others. The Qtum project also intends to launch its native cryptocurrency to support the project through a crowd sale to raise further funds.

China’s Quantum Communications Trailblazer declared Operational after Stellar Performance

Nice write up on the QC news about China’s QC satellite from late Wed.


China’s Quantum Science Satellite was declared operational this week after five months of in-orbit testing, now set for a busy two-year mission demonstrating hack-proof communications by means of entangled photons as a trailblazer for what is widely considered the communications technology of the future.

The Quantum Science Satellite, nicknamed Mozi, was launched into orbit on August 15, 2016 as the world’s first dedicated quantum communications testbed, embarking on an ambitious mission dedicated to validating the principles of quantum communications across vast distances of open space.

Bristol professor reveals quantum power behind new industrial revolution to world leaders at Davos

As the world’s political and business leaders gathered at Davos, it fell to a professor from the University of Bristol to reveal to them the full implications of a ‘fourth industrial revolution’.

Professor Jeremy O’Brien, director of the Centre for Quantum Photonics at the University of Bristol, addressed some of the most powerful people in the world yesterday at the annual meeting of the World Economic Forum (WEF) in Davos, Switzerland – to tell them just how rapidly quantum computers could change the world.

Part of the European Research Council (ERC) Ideas Lab delegation, Professor O’Brien has been actively involved with the WEF over the past few years and recently took on the role of co-chair of the Global Future Council on Computing. Last year he presented a talk on working towards a quantum computer discussing the future of computing and how new fields of computer sciences are paving the way for the next digital revolution.

Violations of energy conservation in the early universe may explain dark energy

(Phys.org)—Physicists have proposed that violations of energy conservation in the early universe, as predicted by certain modified theories of quantum mechanics and quantum gravity, may explain the cosmological constant problem, which is sometimes referred to as “the worst theoretical prediction in the history of physics.”

The physicists, Thibaut Josset and Alejandro Perez at the University of Aix-Marseille, France, and Daniel Sudarsky at the National Autonomous University of Mexico, have published a paper on their proposal in a recent issue Physical Review Letters.

“The main achievement of the work was the unexpected relation between two apparently very distinct issues, namely the accelerated expansion of the universe and microscopic physics,” Josset told Phys.org. “This offers a fresh look at the cosmological constant problem, which is still far from being solved.”

/* */