These recent advances in hardware have highlighted a chicken-and-egg problem: what use will quantum machines be if there is no software to run on them? That accounts for this year’s race to win over developers, who will need to learn a completely new programming approach in preparation for the future machines.
Problem is to persuade developers to make programs for machines that don’t yet exist.
When one of the first personal computers, the Altair 8800 came along in 1976, Microsoft was ready with a programming language, Altair BASIC. It wants to be equally prepared when quantum computers go mainstream, so it has unveiled a new programming language and other tools for the futuristic tech at its Ignite conference. You’ll still need to understand Qubits and other weird concepts, but by integrating traditional languages like C# and Python, Microsoft will make it easier to do mainstream computing on the complex machines.
Quantum computing is famously difficult to grasp — even IBM’s “Beginner’s Guide” is laughingly opaque. In discussing Microsoft’s new initiatives, Bill Gates called the physics “hieroglyphics,” and when asked if he could describe it in one sentence, Satya Nadella said “I don’t think so. I wish I could.”
So, let’s just talk about what it can do, then. By taking advantage of the principles of superposition and entanglement, quantum computers can solve certain types of problems exponentially faster than the best supercomputers. “It would allow scientists to do computations in minutes or hours that would take the lifetime of the universe on even the most advanced classical computers,” Microsoft explains. “That, in turn, would mean that people could find answers to scientific questions previously thought unanswerable.”
President Chunli Bai of the Chinese Academy of Sciences in Beijing had a meeting yesterday with President Anton Zeilinger of the Austria Academy of Sciences in Vienna.
Although 7,400 kilometres (4,600 miles) apart, they were certain no uninvited guests were eavesdropping thanks to the fact their video call was encrypted. Quantum style.
Just a few months ago, China was in the news for a landmark achievement in quantum communication, using a satellite called Micius to transmit entangled photons over a record distance.
“Quantum teleportation through time-shifted AdS wormholes.
(Submitted on 30 Aug 2017)
Based on the work of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, we observe that the time-shifted thermofield states of two entangled CFTs can be made traversable by an appropriate coupling of the two CFTs, or alternatively by the application of a modified quantum teleportation protocol. This provides evidence for the smoothness of the horizon for a large class of entangled states related to the thermofield by time-translations. The smoothness of these states has some relevance for the firewall paradox and the proposal that some observables in quantum gravity may be state-dependent. We notice that quantum teleportation through these entangled states could be used in a laboratory setup to implement a time-machine, which allows the observer to travel far in the future.”
Based on the work of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, we.
Observe that the time-shifted thermofield states of two entangled CFTs can be.
As conventional microchip design reaches its limits, DARPA is pouring money into the specialty chips that might power tomorrow’s autonomous machines.
The coming AI revolution faces a big hurdle: today’s microchips.
It’s one thing to get a bunch of transistors on an integrated circuit to crunch numbers, even very large ones. But what the brain does is far more difficult. Processing vast amounts of visual data for use by huge, multi-cellular organism is very different from the narrow calculations of conventional math. The algorithms that will drive tomorrow’s autonomous cars, planes, and programs will be incredibly data-intensive, with needs well beyond what conventional chips were ever designed for. This is one reason for the hype surrounding quantum computing and neurosynaptic chips.