Toggle light / dark theme

To tame chaos in powerful semiconductor lasers, which causes instabilities, scientists have introduced another kind of chaos.

High-powered semiconductor lasers are used in materials processing, biomedical imaging and industrial research, but the emitted light they produce is affected by instabilities, making it incoherent.

The instabilities in the laser are caused by optical filaments; light structures that move randomly and change with time, causing chaos. Removing these instabilities has long been a goal in physics, but previous strategies to reduce filaments have usually involved reducing the power of the laser.

Read more

Computing innovation, computer-generated images, Virtual Reality Glasses, Hybrid Reality, communications, Holographic platform, AR, VR, PC, lifelike experience, 3D cameras, cosmic computing, computer security, gaming displays, in-flight entertainment, computer code, Holographic ideal/paradigm, gaming mechanics, automotive, medical, space, spatial, holographic memory, Artificial Neural Networks, Robotics, holographic 3D, software company, mixed-realty, holographic data, hologram monitors, hologram keyboards, voice equipment, projector system, Holographic apps, HD photography, smartphones, tablets, TVs, laptops, digital displays, 360 Video, Virtual Realty Headsets, Mobile Platforms, holographic universe, ubiquitous computing paradigm, virtual images, Holoquad, Holographic Projector Pyramid, cloud computing, spaceships, teleportation, anti-gravity devices, emulation, advanced technology, light field displays, Mobile Hologram Technology, computer programs, untethered, Immersive Technology, Computer Chips, Elohim computer, custom software, mobile application development, computing library, human-computer interactions, Artificial Neural Networks, holographic memory, Spider-Robots, pop-up gaming displays, automate machinery, computer-generated simulation, 3D Pyramid, consumer electronics, personal computers, holographic images, real-world objects, hardware interconnection, missionary, virtual assistant, Computer Systems Structure, two-dimensional computer display, computerization, Projection Screen, Portable, 3D printer, Hologram goggles, 3D Holographic Projection Technology, Hologram Computer Table, hologram generator, multilevel computer, mixed reality, Bluetooth enabled, Virtual Reality Display, transparent screen display, quantum computer, computer animation, 3D plasma display, meta surface, Dark Energy, holographic interferograms, photorefractive, Holographic atomic memory, computer-generated hologram, real-time hologram, x-ray mirror mandrels, virtual wavefront recording plane, Artificial intelligence, AI, Human Resources, Advertising, Animation, Graphic Web Design, Photography, Robotics, computer science, human-robot interaction, Emergency Medical Hologram, wearable computing, bio-computing, battlefield simulations, Holographic Associative Memory, artificial neural network, Digital Avatar.

Read more

A kiwi physicist has discovered the energy difference between two quantum states in the helium atom with unprecedented accuracy, a ground-breaking discovery that contributes to our understanding of the universe and space-time and rivals the work of the world’s most expensive physics project, the Large Hadron Collider.

Our understanding of the universe and the forces that govern it relies on the Standard Model of particle physics. This model helps us understand space-time and the fundamental forces that hold everything in the universe in place. It is the most accurate scientific theory known to humankind.

But the Standard Model does not fully explain everything, for example it doesn’t explain gravity, dark matter, dark energy, or the fact that there is way more matter than antimatter in the universe.

Read more

By combining quantum mechanical quirks of light with a technique called photonic force microscopy, scientists can now probe detailed structures inside living cells like never before. This ability could bring into focus previously invisible processes and help biologists better understand how cells work.

Photonic force microscopy is similar to atomic force microscopy, where a fine-tipped needle is used to scan the surface of something extremely small such as DNA. Rather than a needle, researchers used extremely tiny fat granules about 300 nanometers in diameter to map out the flow of cytoplasm inside yeast cells with high precision.

To see where these miniscule fat particles were, they shined a laser on them. Here, the researchers had to rely on what’s known as squeezed light. Photons of light are inherently noisy and because of this, a laser beam’s light particles won’t all hit a detector at the same time. There is a slight randomness to their arrival that makes for a fuzzy picture. But squeezed light uses quantum mechanical tricks to reduce this noise and clear up the fuzziness.

Read more