Archive for the ‘quantum physics’ category: Page 787
Jul 8, 2016
Google Tinkers With Chrome Cryptosecurity To Fight Quantum Hacks
Posted by Karen Hurst in categories: cybercrime/malcode, encryption, privacy, quantum physics
Glad Google is doing this because next month could be a real test when China launches its Quantum Satellite.
Today’s encryption is an arms race as digital security experts try to hold off hackers’ attempts to break open user data. But there’s a new tech on the horizon that even the NSA recognizes as crucial to protect against: quantum computing, which is expected to dramatically speed up attempts to crack some commonly-used cryptographic schemes. To get ahead of the game, Google is testing new digital security setups on single-digit populations of Chrome users.
Quantum computing is such a potential threat because it can do many more simultaneous calculations than current computers. Modern binary bits can only be in two states when electric current is run through them: 0 or 1. But the ambiguous nature of the quantum state means its elemental units (known as “qubits”) could be in either state at a time, so two could potentially be in four orientations at one time: 00, 01, 10 or 11. That ambiguity is exponential, so three qubits could be in eight at a time, and so on.
Continue reading “Google Tinkers With Chrome Cryptosecurity To Fight Quantum Hacks” »
Jul 8, 2016
Microsoft Testing DNA’s Data Storage Ability With Record-Breaking Results
Posted by Karen Hurst in categories: computing, genetics, information science, internet, quantum physics
Biocomputing/ living circuit computing/ gene circuitry are the longer term future beyond Quantum. Here is another one of the many building blocks.
The tiny molecule responsible for transmitting the genetic data for every living thing on earth could be the answer to the IT industry’s quest for a more compact storage medium. In fact, researchers from Microsoft and the University of Washington recently succeeded in storing 200 MB of data on a few strands of DNA, occupying a small dot on a test tube many times smaller than the tip of a pencil.
The Internet in a Shoebox.
Continue reading “Microsoft Testing DNA’s Data Storage Ability With Record-Breaking Results” »
Jul 7, 2016
Quantum processor for single photons
Posted by Klaus Baldauf in categories: computing, particle physics, quantum physics
“Nothing is impossible!” In line with this motto, physicists from the Quantum Dynamics Division of Professor Gerhard Rempe (director at the Max Planck Institute of Quantum Optics) managed to realise a quantum logic gate in which two light quanta are the main actors. The difficulty of such an endeavour is that photons usually do not interact at all but pass each other undisturbed. This makes them ideal for the transmission of quantum information, but less suited for its processing. The scientists overcame this steep hurdle by bringing an ancillary third particle into play: a single atom trapped inside an optical resonator that takes on the role of a mediator. “The distinct feature of our gate implementation is that the interaction between the photons is deterministic”, explains Dr. Stephan Ritter. “This is essential for future, more complex applications like scalable quantum computers or global quantum networks.”
In all modern computers, data processing is based on information being binary-coded and then processed using logical operations. This is done using so-called logic gates which assign predefined output values to each input via deterministic protocols. Likewise, for the information processing in quantum computers, quantum logic gates are the key elements. To realise a universal quantum computer, it is necessary that every input quantum bit can cause a maximal change of the other quantum bits. The practical difficulty lies in the special nature of quantum information: in contrast to classical bits, it cannot be copied. Therefore, classical methods for error correction cannot be applied, and the gate must function for every single photon that carries information.
Because of the special importance of photons as information carriers – for example, for communicating quantum information in extended quantum networks – the realisation of a deterministic photon-photon gate has been a long-standing goal. One of several possibilities to encode photonic quantum bits is the use of polarisation states of single photons. Then the states “0” and “1” of a classical bit correspond to two orthogonal polarisation states. In the two-photon gate, the polarisation of each photon can influence the polarisation of the other photon. As in the classical logic gate it is specified beforehand which input polarisation leads to which output polarisation. For example, a linear polarisation of the second photon is rotated by 90° if the first one is in the logic state “1”, and remains unchanged if the first one is in “0”.
Jul 6, 2016
Probing Quantum Phenomena in Tiny Transistors
Posted by Karen Hurst in categories: computing, nanotechnology, quantum physics
Nearly 1,000 times thinner than a human hair, nanowires can only be understood with quantum mechanics. Using quantum models, physicists from Michigan Technological University have figured out what drives the efficiency of a silicon-germanium (Si-Ge) core-shell nanowire transistor.
Core-Shell Nanowires
The study, published last week in Nano Letters, focuses on the quantum tunneling in a core-shell nanowire structure. Ranjit Pati, a professor of physics at Michigan Tech, led the work along with his graduate students Kamal Dhungana and Meghnath Jaishi.
Continue reading “Probing Quantum Phenomena in Tiny Transistors” »
Jul 5, 2016
Quantum fingerprinting surpasses classical limit
Posted by Karen Hurst in category: quantum physics
Nice.
(Phys.org)—As the saying goes, no two fingerprints are alike, and the same is true for quantum fingerprints. Just as a human fingerprint is only a fraction of the size of a person, yet can be used to distinguish between any two people (at least in theory), quantum fingerprints are exponentially smaller than the string of information they represent, yet they can be used to distinguish between any two strings.
Ever since quantum fingerprinting was first proposed in 2001, it has for the most part remained an interesting theoretical concept, with only a handful of protocols having managed to experimentally demonstrate the idea.
Continue reading “Quantum fingerprinting surpasses classical limit” »
Jul 5, 2016
Bowtie-shaped nanostructures may advance the development of quantum devices
Posted by Karen Hurst in categories: computing, nanotechnology, particle physics, quantum physics
Bowtie-shaped nanoparticles made of silver may help bring the dream of quantum computing and quantum information processing closer to reality. These nanostructures, created at the Weizmann Institute of Science and described recently in Nature Communications, greatly simplify the experimental conditions for studying quantum phenomena and may one day be developed into crucial components of quantum devices.
The research team led by Prof. Gilad Haran of Weizmann’s Chemical Physics Department — postdoctoral fellow Dr. Kotni Santhosh, Dr. Ora Bitton of Chemical Research Support and Prof. Lev Chuntonov of the Technion-Israel Institute of Technology — manufactured two-dimensional bowtie-shaped silver nanoparticles with a minuscule gap of about 20 nanometers (billionths of a meter) in the center. The researchers then dipped the “bowties” in a solution containing quantum dots, tiny semiconductor particles that can absorb and emit light, each measuring six to eight nanometers across. In the course of the dipping, some of the quantum dots became trapped in the bowtie gaps.
Under exposure to light, the trapped dots became “coupled” with the bowties — a scientific term referring to the formation of a mixed state, in which a photon in the bowtie is shared, so to speak, with the quantum dot. The coupling was sufficiently strong to be observed even when the gaps contained a single quantum dot, as opposed to several. The bowtie nanoparticles could thus be prompted to switch from one state to another: from a state without coupling to quantum dots, before exposure to light, to the mixed state characterized by strong coupling, following such exposure.
Continue reading “Bowtie-shaped nanostructures may advance the development of quantum devices” »
Jul 5, 2016
Quantum physics meets IT security
Posted by Karen Hurst in categories: computing, government, quantum physics, security, singularity, space
Nice that they are trying to ensure this. However, as we integrate more tech into Biocomputing space and our efforts in achieving singularity; you will need some level of a medical/ or bio background.
It’s hard enough for IT security managers to keep with the latest in conventional computing. Cloud Security Alliance and the US government are trying to make sure you don’t need a physics degree, too.
Jul 4, 2016
China to launch ‘hack-proof’ quantum satellite next month
Posted by Karen Hurst in categories: computing, encryption, quantum physics, satellites
Get ready.
China will launch the world’s first quantum satellite next month to demonstrate a series of advanced technologies such as hacker-proof communications and quantum teleportation.
Ground testing and quality checks on the satellite had finished at the Chinese Academy of Sciences, and it would depart for the Jiuquan Satellite Launch Centre in Inner Mongolia early this month for a launch aboard a Long March 2D rocket in the middle of next month, according to a report on the central government’s website posted on Friday.
Continue reading “China to launch ‘hack-proof’ quantum satellite next month” »
Jul 4, 2016
Quantum physics and consciousness
Posted by Shailesh Prasad in categories: neuroscience, quantum physics
According to this theory, nothing really happens in physical world. Physical world is just a manifestation of the our consciousness. It seems that ancient Indian yogis have always known this. They have always believed in supreme consciousness which runs cosmos.