Toggle light / dark theme

A chess problem could help scientists finally unravel whether quantum theory can explain human consciousness.

Oxford professor Sir Roger Penrose created the puzzle to prove the human mind can never be matched by a computer because it exhibits quantum effects.

This means the brain doesn’t follow the rules for the classical properties of matter like a computer.

Read more

Scientists say it’s possible to build a new type of self-replicating computer that replaces silicon chips with processors made from DNA molecules, and it would be faster than any other form of computer ever proposed — even quantum computers.

Called a nondeterministic universal Turing machine (NUTM), it’s predicted that the technology could execute all possible algorithms at once by taking advantage of DNA’s ability to replicate almost perfect copies of itself over billions of years.

The basic idea is that our current electronic computers are based on a finite number of silicon chips, and we’re fast approaching the limit for how many we can actually fit in our machines.

Read more

Researchers from The University of Manchester have shown it is possible to build a new super-fast form of computer that “grows as it computes”.

Professor Ross D King and his team have demonstrated for the first time the feasibility of engineering a nondeterministic universal Turing machine (NUTM), and their research is to be published in the prestigious Journal of the Royal Society Interface.

The theoretical properties of such a computing machine, including its exponential boost in speed over electronic and quantum computers, have been well understood for many years – but the Manchester breakthrough demonstrates that it is actually possible to physically create a NUTM using DNA molecules.

Read more

Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics – so strange, in fact, that Albert Einstein famously referred to it as “spooky action at a distance.”

Essentially, entanglement involves two particles, each occupying multiple states at once – a condition referred to as superposition. For example, both particles may simultaneously spin clockwise and counterclockwise. But neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state.

The resulting correlations between the particles are preserved, even if they reside on opposite ends of the universe.

Read more

IBM esta anunciando que estão desenvolvendo um sistema universal de “computação qu ntica”

O serviço será chamado IBM Q, e ele dará às pessoas acesso ao seu computador qu ntico de estágio inicial pela internet para usar como desejar — por uma taxa.

O grande elefante na sala é que, por enquanto, o computador qu ntico da IBM só funciona com cinco qubits, então não é muito mais rápido (se houver mais rápido) do que um computador convencional.

Read more

By Matt Reynolds

By making DNA endlessly change, researchers have shown how a biological computer might one day solve problems much faster than conventional computers or even quantum computers. It’s still a long way from being functional though.

The DNA-based system is an experiment in how it may be possible to make a theoretical type of computer known as a non-deterministic universal Turing machine.

Read more

IBM has taken its first step towards selling computers that are millions of times faster than the one you’re reading this on.

The company has set up a new division, IBM Q, that is intended to make quantum computers and sell them commercially.

Until now, quantum computers have mostly been a much hyped but long away dream. But IBM believes they are close enough to reality to start work on getting software ready for when they become commercially available.

Read more