Toggle light / dark theme

Within days of each other back in 1998, two teams published the results of the first real-world quantum computations. But the first quantum computers weren’t computers at all. They were biochemistry equipment, relying on the same science as MRI machines.

You might think of quantum computing as a hyped-up race between computer companies to build a powerful processing device that will make more lifelike AI, revolutionize medicine, and crack the encryption that protects our data. And indeed, the prototype quantum computers of the late 1990s indirectly led to the quantum computers built by Google and IBM. But that’s not how it all began—it started with physicists tinkering with mathematics and biochemistry equipment for curiosity’s sake.

Read more

Rice University physicists have created the world’s first laser-cooled neutral plasma, completing a 20-year quest that sets the stage for simulators that re-create exotic states of matter found inside Jupiter and white dwarf stars.

The findings are detailed this week in the journal Science and involve new techniques for cooling clouds of rapidly expanding to temperatures about 50 times colder than deep space.

“We don’t know the practical payoff yet, but every time physicists have laser cooled a new kind of thing, it has opened a whole world of possibilities,” said lead scientist Tom Killian, professor of physics and astronomy at Rice. “Nobody predicted that laser cooling atoms and ions would lead to the world’s most accurate clocks or breakthroughs in quantum computing. We do this because it’s a frontier.”

Read more

Dan Shechtman has the rare honour of possessing a Nobel Prize for ‘nonsense’.

It’s been nearly four decades since he set out to convince the chemist community of a discovery most considered impossible – a material called a quasicrystal. Now we have just observed a brand new variety of these once ‘impossible’ materials for the first time, one based on a single unit.

Chemists from Brown University have described the successful creation of a self-constructing lattice structure based on a strangely shaped quantum dot.

Read more

Researchers from MIT and elsewhere have recorded, for the first time, the “temporal coherence” of a graphene qubit—meaning how long it can maintain a special state that allows it to represent two logical states simultaneously. The demonstration, which used a new kind of graphene-based qubit, represents a critical step forward for practical quantum computing, the researchers say.

Superconducting quantum bits (simply, qubits) are artificial atoms that use various methods to produce bits of quantum information, the fundamental component of quantum computers. Similar to traditional binary circuits in computers, qubits can maintain one of two states corresponding to the classic binary bits, a 0 or 1. But these qubits can also be a superposition of both states simultaneously, which could allow quantum computers to solve complex problems that are practically impossible for traditional computers.

The amount of time that these qubits stay in this superposition state is referred to as their “coherence time.” The longer the coherence time, the greater the ability for the qubit to compute complex problems.

Read more

Quantum computing will break most of the encryption schemes on which we rely today. These five tips will help you get ready.

Search on the phrase “quantum computing,” and you’ll find a furious debate. On the one hand, you’ll read breathless articles predicting groundbreaking advances in artificial intelligence, genomics, economics, and pretty much every field under the sun. On the other, you’ll find the naysayers: It’s all hype. Large-scale quantum computers are still decades away — if they’re possible at all. Even if they arrive, they won’t be much faster than standard computers except for a tiny subset of problems.

There’s one area, however, where you’ll find all sides agree: Quantum computing will break most of the encryption schemes on which we rely today. If you’re responsible for your organization’s IT or security systems, and that sentence made the hair on the back of your neck stand up, good. To get ready for a post-quantum world, you should be thinking about the problem now.

Read more

Researchers in the field of quantum communication have recently made great strides, taking us closer to a perfectly secure method of communication.

For years, researchers struggled to find ways to amplify quantum signals, store large amounts of quantum data, and allow for more than two nodes in a quantum network. However, in the last two months, solutions to all three of these problems have been found using the bizarre properties of the quantum world, in particular quantum entanglement.

Now that these hurdles have been overcome, quantum networks and even a quantum internet seem like real possibilities.

Read more