Toggle light / dark theme

‘Strange history’ of photons challenges our understanding of quantum interactions

A surprising property of how resonant photons interact with an absorbing medium has been uncovered by physicists in Canada. They say they have found that even photons passing straight through the medium energize atoms within it, causing atoms to spend nearly as much time in their excited states as those that have absorbed photons. They see their result as a challenge to theorists trying to describe how light interacts with matter quantum mechanically.

Aephraim Steinberg and colleagues at the University of Toronto made the discovery while investigating what happens to a beam of photons passing through a cloud of atoms when the photons’ frequency is equal to that of one of the atomic transitions. Intuitively, they say, it would be expected that those photons exciting atoms within the cloud would be absorbed and then at best re-emitted in a random direction. As such, the flux of photons coming from excited atoms that are detected in the forward direction would be miniscule.

Indeed, they point out, this idea that only absorbed, or “lost”, photons contribute to the excitation springs naturally from theory that tells us the total time atoms spend in the excited state is directly proportional to the number of photons that are lost.

Are researchers one step closer to developing the theory of impulse circuits?

Computers play an important role in many aspects of life today. Digital computers are the most widely used, while quantum computers are well known. However, the least known computers are the so-called Stochastic Pulse Computers. Their work is based on highly parallel logical operations between trains of electrical pulses, where the pulses occur at random times, as in neurons, the nerve cells in the brains of humans and mammals.

Scientists Built a Super Fast Quantum Battery

Researchers from the Institute of Photonics and Nanotechnologies of the Cnr and the Politecnico di Milano have built a battery which, following the laws of quantum physics, has a recharge time that is inversely related to the amount of stored energy.

Quantum batteries are a new class of energy storage devices that operate according to the principles of quantum physics, the science that studies the infinitely small where the laws of classical physics do not always apply. Tersilla Virgili of the Institute of Photonics and Nanotechnologies of the National Research Council (Cnr-Ifn) and Giulio Cerullo of the Physics Department of the Politecnico di Milano have shown that it is possible to manufacture a type of quantum battery where the charging power increases faster by increasing the battery capacity. The work, carried out together with other international research groups, was published in Science Advances.

“Quantum batteries have a counter-intuitive property in which the recharge time is inversely related to the battery capacity, that is the amount of stored electrical charge,” explains Virgili. “This leads to the intriguing idea that the charging power of quantum batteries is super-extensive, meaning that it increases faster with battery size.”

Trapping tiny particles: A versatile tool for nanomanipulation

At just 1/1000th of a millimeter, nanoparticles are impossible to see with the naked eye. But, despite being small, they’re extremely important in many ways. If scientists want to take a close look at DNA, proteins, or viruses, then being able to isolate and monitor nanoparticles is essential.

Trapping these particles involves tightly focusing a to a point that produces a strong electromagnetic field. This beam can hold particles just like a pair of tweezers but, unfortunately, there are natural restrictions to this technique. Most notable are the size restrictions—if the particle is too small, the technique won’t work. To date, optical tweezers have been unable to hold particles like individual proteins, which are only a few nanometers in diameter.

Now, due to recent advances in nanotechnology, researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a technique for precise nanoparticle trapping. In this study, they overcame the natural restrictions by developing optical tweezers based on —a synthetic material with specific properties that do not occur naturally. This was the first time that this kind of metamaterial had been used for single nanoparticle trapping.

Atom Computing Raises $60M Series B to Build Second-Generation Quantum Computing Systems

BERKELEY, Calif. 0, Jan. 20, 2022 — Atom Computing, the creators of the first quantum computer made of nuclear-spin qubits from optically-trapped neutral atoms, today announced closure of a $60M Series B round. Third Point Ventures led the round, followed by Primer Movers Lab and insiders including Innovation Endeavors, Venrock and Prelude Ventures. Following the completion of their first 100-qubit quantum computing system with world-record 40 second coherence times, Atom Computing will use this new investment to build their second-generation quantum computing systems and commercialize the technology.

“Atom Computing designed and built our first-generation machine, Phoenix 0, in less than two years and our team was the fastest to deliver a 100-qubit system,” said Rob Hays 0, CEO and President, Atom Computing. “We gained valuable learnings from the system and have proven the technology. The investment announced today accelerates the commercialization opportunities and we look forward to bringing this to market.”

With this new level of investment, the company will turn its focus to developing much larger systems that are required to run commercial use-cases with paradigm-shifting compute performance.

Major Breakthrough As Quantum Computing in Silicon Hits 99% Accuracy

UNSW Sydney-led research paves the way for large silicon-based quantum processors for real-world manufacturing and application.

Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based quantum devices compatible with current semiconductor manufacturing technology.

“Today’s publication in Nature shows our operations were 99 percent error-free,” says Professor Andrea Morello of UNSW, who led the work.

Quantum Computer With More Than 5,000 Qubits Launched

Official launch marks a milestone in the development of quantum computing in Europe.

A quantum annealer with more than 5,000 qubits has been put into operation at Forschungszentrum Jülich. The Jülich Supercomputing Centre (JSC) and D-Wave Systems, a leading provider of quantum computing systems, today launched the company’s first cloud-based quantum service outside North America. The new system is located at Jülich and will work closely with the supercomputers at JSC in the future. The annealing quantum computer is part of the Jülich UNified Infrastructure for Quantum computing (JUNIQ), which was established in autumn 2019 to provide researchers in Germany and Europe with access to various quantum systems.

Quantum computing in silicon hits 99% accuracy

UNSW Sydney-led research paves the way for large silicon-based quantum processors for real-world manufacturing and application.

Australian researchers have proven that near error-free quantum computing is possible, paving the way to build silicon-based compatible with current semiconductor manufacturing technology.

“Today’s publication in Nature shows our operations were 99 percent error-free,” says Professor Andrea Morello of UNSW, who led the work.

A language for Quantum computing

Time crystals. Microwaves. Diamonds. What do these three disparate things have in common?

Quantum computing. Unlike traditional computers that use bits, quantum computers use qubits to encode information as zeros or ones, or both at the same time. Coupled with a cocktail of forces from quantum physics, these fridge-sized machines can process a whole lot of information – but they’re far from flawless. Just like our regular computers, we need to have the right programming languages to properly compute on quantum computers.

Programming quantum computers requires awareness of something called “entanglement”, a computational multiplier for qubits of sorts, which translates to a lot of power. When two qubits are entangled, actions on one qubit can change the value of the other even when they are physically separated, giving rise to Einstein’s characterization of “spooky action at a distance.” But that potency is equal parts a source of weakness. When programming, discarding one qubit without being mindful of its entanglement with another qubit can destroy the data stored in the other, jeopardizing the correctness of the program.

Superabsorption unlocks key to next-generation quantum batteries

Researchers at the University of Adelaide and their overseas partners have taken a key step in making quantum batteries a reality. They have successfully proved the concept of superabsorption, a crucial idea underpinning quantum batteries.

“Quantum batteries, which use quantum mechanical principles to enhance their capabilities, require less charging time the bigger they get,” said Dr. James Q. Quach, who is a Ramsay Fellow in the School of Physical Sciences and the Institute for Photonics and Advanced Sensing (IPAS), at the University of Adelaide.

“It is theoretically possible that the charging power of quantum batteries increases faster than the size of the which could allow new ways to speed charging.”

/* */