Menu

Blog

Archive for the ‘quantum physics’ category: Page 671

Nov 13, 2016

Lucid-Dreaming Quantum Physics

Posted by in categories: futurism, quantum physics

Maybe this is the secret ingredient to futurists.


By Paul Levy: The following is excerpted from from Paul Levy’s upcoming book, The Quantum Revelation: A Modern-Day Spiritual Treasure, and was originally published on Paul’s website Awaken the Dream

Awaken

Continue reading “Lucid-Dreaming Quantum Physics” »

Nov 13, 2016

Breakthrough in the quantum transfer of information between matter and light

Posted by in categories: innovation, quantum physics

From stationary to flying qubits at speeds never reached before… This feat, achieved by a team from Polytechnique Montréal and France’s Centre national de la recherche scientifique (CNRS), brings us a little closer to the era when information is transmitted via quantum principles.

Read more

Nov 13, 2016

Semantic Scholar search engine is expanded into neuroscience

Posted by in categories: neuroscience, quantum physics, robotics/AI

Bio Intelligence-based search engine; coming soon. Building blocks if you think about it with the whole Synthetic DNA storage, connected cell circuitry to make buildings, machines, devices, etc. living. We needed quantum in the infrastructure to ensure things like bio-intelligence, autonomous machines, and connected super humans could eventually happen while reducing risks and threats. Now, we’re watching the ramp up of synthetic bio systems. Definitely exciting especially when we could see in our lifetime mobile devices no longer needed.


(Tech Xplore)—Allen Institute for Artificial Intelligence is in the news with its smart search engine, Semantic Scholar.

Namely, they are expanding their intelligence-based service into neuroscience research.

Continue reading “Semantic Scholar search engine is expanded into neuroscience” »

Nov 13, 2016

Samsung sets their Eyes on a Revolutionary Holographic TV

Posted by in categories: electronics, quantum physics

Samsung took the leap and delivered Quantum Dot TV ahead of the competition and now they’ve setting their eyes on something more revolutionary: Holographic TV.

Read more

Nov 11, 2016

Bitcoin users relax: Quantum computing no match for SHA-2 encryption

Posted by in categories: bitcoin, cryptocurrencies, economics, encryption, quantum physics

Worried about security for your bitcoin in the face of quantum computing? According to computer researchers, there’s no reason to be.

Source: https://hacked.com/breathe-easy-bitcoiners-quantum-computing…encryption

Quantum mech

Some people assume that once quantum computing comes along modern encryption technologies will be outpowered. But experts are starting to posit that hash functions and asymmetric encryption could defend not only against modern computers, but also against quantum attackers from the future.

Continue reading “Bitcoin users relax: Quantum computing no match for SHA-2 encryption” »

Nov 11, 2016

A New Wave of Quantum Computers: D-Wave to Ship a 2,000-Qubit Quantum Computer by 2017

Posted by in categories: engineering, quantum physics, robotics/AI

In Brief:

  • New quantum computer has double the processing power of D-Wave’s current version.
  • With speeds up to 1,000 times faster than what’s currently available, it could revolutionize fields like engineering, software validation, and machine learning.

Read more

Nov 10, 2016

Quantum Weirdness is Everywhere in Life

Posted by in categories: particle physics, quantum physics

Weird quantum effects are so delicate it seems they could only happen in a lab. How on Earth can life depend on them?

The point of the most famous thought-experiment in quantum physics is that the quantum world is different from our familiar one. Imagine, suggested the Austrian physicist Erwin Schrödinger, that we seal a cat inside a box. The cat’s fate is linked to the quantum world through a poison that will be released only if a single radioactive atom decays. Quantum mechanics says that the atom must exist in a peculiar state called ‘superposition’ until it is observed, a state in which it has both decayed and not decayed. Furthermore, because the cat’s survival depends on what the atom does, it would appear that the cat must also exist as a superposition of a live and a dead cat until somebody opens the box and observes it. After all, the cat’s life depends on the state of the atom, and the state of the atom has not yet been decided.

Yet nobody really believes that a cat can be simultaneously dead and alive. There is a profound difference between fundamental particles, such as atoms, which do weird quantum stuff (existing in two states at once, occupying two positions at once, tunnelling through impenetrable barriers etc) and familiar classical objects, such as cats, that apparently do none of these things. Why don’t they? Simply put, because the weird quantum stuff is very fragile.

Read more

Nov 10, 2016

What Sonic Black Holes Say About Real Ones

Posted by in categories: cosmology, quantum physics

Can a fluid analogue of a black hole point physicists toward the theory of quantum gravity, or is it a red herring?

Read more

Nov 10, 2016

Two paths at once: Watching the buildup of quantum superpositions

Posted by in categories: particle physics, quantum physics

Scientists have observed how quantum superpositions build up in a helium atom within femtoseconds. Just like in the famous double-slit experiment, there are two ways to reach the final outcome.

Read more

Nov 10, 2016

Stable quantum bits can be made from complex molecules

Posted by in categories: chemistry, computing, information science, quantum physics

Quantum computing is about to get more complex. Researchers have evidence that large molecules made of nickel and chromium can store and process information in the same way bytes do for digital computers. The researchers present algorithms proving it’s possible to use supramolecular chemistry to connect “qubits,” the basic units for quantum information processing, in Chem on November 10. This approach would generate several kinds of stable qubits that could be connected together into structures called “two-qubit gates.”

“We have shown that the chemistry is achievable for bringing together two-qubit gates,” says senior author Richard Winpenny, Head of the University of Manchester School of Chemistry. “The molecules can be made and the two-qubit gates assembled. The next step is to show that these two-qubit gates work.”

Read more