Menu

Blog

Archive for the ‘quantum physics’ category: Page 471

Jul 2, 2020

‘Hybrid’ Quantum Networking Demonstrated for First Time

Posted by in categories: computing, particle physics, quantum physics

In a world’s first, researchers in France and the U.S. have performed a pioneering experiment demonstrating “hybrid” quantum networking. The approach, which unites two distinct methods of encoding information in particles of light called photons, could eventually allow for more capable and robust communications and computing.

Similar to how classical electronics can represent information as digital or analog signals, quantum systems can encode information as either discrete variables (DVs) in particles or continuous variables (CVs) in waves. Researchers have historically used one approach or the other—but not both—in any given system.

“DV and CV encoding have distinct advantages and drawbacks,” says Hugues de Riedmatten of the Institute of Photonic Sciences in Barcelona, who was not a part of the research. CV systems encode information in the varying intensity, or phasing, of light waves. They tend to be more efficient than DV approaches but are also more delicate, exhibiting stronger sensitivity to signal losses. Systems using DVs, which transmit information by the counting of photons, are harder to pair with conventional information technologies than CV techniques. They are also less error-prone and more fault-tolerant, however. Combining the two, de Riedmatten says, could offer “the best of both worlds.”

Jul 1, 2020

China is Researching Quantum Radars to Track and Kill Submarines

Posted by in categories: quantum physics, surveillance

China is even developing a satellite-based laser surveillance system aimed at detecting vessels submerged as deep as five hundred meters.

By Sebastien Roblin

Here’s What You Need To Remember: Time will tell which, if any, of these technologies can be developed into practical operational systems.

Jul 1, 2020

Scientists Fire Up a Commercially Available Desktop Quantum Computer

Posted by in categories: computing, education, information science, quantum physics

Scientists suggest a desktop quantum computer based on nuclear magnetic resonance (NMR) could soon be on its way to a classroom near you. Although the device might not be suited to handle large quantum applications, the makers say it could help students learn about quantum computing.

SpinQ Chief Scientist Prof. Bei Zeng from University of Guelph, announced the SpinQ Gemini, a two-qubit desktop quantum computer, at the industry session of the Quantum Information Processing (QIP2020) conference, which is held recently in Shenzhen, China. It is the first time that a desktop quantum computer is commercially available, according to the researchers.

SpinQ Gemini is built by the state-of-the-art technology of permanent magnets, providing 1T magnetic field, running at room temperature, and maintenance free. It demonstrates quantum algorithms such as Deutsch’s algorithm and Grover’s algorithm for teaching quantum computing to university and high school students, also provides advanced models for quantum circuit design and control sequence design for researchers.

Jul 1, 2020

Nanosatellites could beam ‘quantum internet’ to Earth

Posted by in categories: internet, quantum physics, satellites

Tiny satellites could be the key to a global quantum internet network. That could mean internet from space on Earth, and communication between spacecraft.

Jul 1, 2020

Quantum fridge works by superposing the order of events

Posted by in category: quantum physics

Ever tried defrosting your dinner by popping it in one identical freezer after another? Strange as it sounds, recent studies of indefinite causal order—in which different orders of events are quantum superposed—suggest this could actually work for quantum systems. Researchers at the University of Oxford show how the phenomenon can be put to use in a type of quantum refrigeration.

Jun 30, 2020

NASA Team Claims ‘Impossible’ Space Engine Works—Get the Facts

Posted by in categories: quantum physics, space travel

face_with_colon_three circa 2016.


Scientists just published a paper saying that the controversial EmDrive produces thrust, even though that defies known laws of physics.

Jun 30, 2020

Researchers use quantum teleportation to jam with a quantum AI

Posted by in categories: media & arts, quantum physics, robotics/AI

https://youtube.com/watch?v=WVv5OAR4Nik

Dr Alexis Kirke of the University of Plymouth has demonstrated the use of teleportation in music jamming.

Jun 29, 2020

Quantum Entanglement Demonstrated Aboard Orbiting CubeSat – Step Toward Space-Based Global Quantum Network

Posted by in categories: quantum physics, security, space

Advance poised to enable cost-effective space-based global quantum network for secure communications and more.

In a critical step toward creating a global quantum communications network, researchers have generated and detected quantum entanglement onboard a CubeSat nanosatellite weighing less than 2.6 kilograms and orbiting the Earth.

“In the future, our system could be part of a global quantum network transmitting quantum signals to receivers on Earth or on other spacecraft,” said lead author Aitor Villar from the Centre for Quantum Technologies at the National University of Singapore. “These signals could be used to implement any type of quantum communications application, from quantum key distribution for extremely secure data transmission to quantum teleportation, where information is transferred by replicating the state of a quantum system from a distance.”

Jun 29, 2020

Quantum weirdness gives radar a boost

Posted by in category: quantum physics

Entangled photons can be used to make quantum radar that delivers a target’s location.

Jun 29, 2020

Team develops method for trapping elusive electrons

Posted by in categories: computing, nanotechnology, quantum physics

Graphene’s unique 2-D structure means that electrons travel through it differently than in most other materials. One consequence of this unique transport is that applying a voltage doesn’t stop the electrons like it does in most other materials. This is a problem, because to make useful applications out of graphene and its unique electrons, such as quantum computers, it is necessary to be able to stop and control graphene electrons.

An interdisciplinary team of scientists from the Universidad Autonoma de Madrid (Spain), Université Grenoble Alpes (France), International Iberian Nanotechnology Laboratory (Portugal) and Aalto University has solved this long-standing problem. The team included experimental researchers Eva Cortés del Río, Pierre Mallet, Héctor González‐Herrero, José María Gómez‐Rodríguez, Jean‐Yves Veuillen and Iván Brihuega and theorists including Joaquín Fernández-Rossier and Jose Lado, assistant professor in the department of Applied Physics at Aalto.

The experimental team used atomic bricks to build walls capable of stopping the electrons. This was achieved by creating atomic walls that confined the electrons, leading to structures whose spectrum was then compared with theoretical predictions, demonstrating that electrons were confined. In particular, it was obtained that the engineered structures gave rise to nearly perfect confinement of electrons, as demonstrated from the emergence of sharp quantum well resonances with a remarkably long lifetime.