A black hole laser in analogues of gravity amplifies Hawking radiation, which is unlikely to be measured in real black holes, and makes it observable. There have been proposals to realize such black hole lasers in various systems. However, no progress has been made in electric circuits for a long time, despite their many advantages such as high-precision electromagnetic wave detection. Here we propose a black hole laser in Josephson transmission lines incorporating metamaterial elements capable of producing Hawking-pair propagation modes and a Kerr nonlinearity due to the Josephson nonlinear inductance. A single dark soliton obeying the nonlinear Schrödinger equation produces a black hole-white hole horizon pair that acts as a laser cavity through a change in the refractive index due to the Kerr effect.
Category: quantum physics – Page 470
Circa 2009 real teleportation not just in the quantum realm.
Ground-state entanglement induces emergence of negative-energy-density regions in quantum systems by squeezing zero-point oscillation, keeping total energy of the systems nonnegative. By use of the negativity of quantum energy density, protocols of quantum energy teleportation are proposed that transport energy to distant sites by local operations and classical communication. The energy is teleported without breaking any physical laws including causality and local energy conservation. Because intermediate subsystems of the energy transfer channel are not excited during the protocol execution, the protocol attains energy transportation without heat generation in the channel. We discuss the protocol focusing around qubit chains. In addition, we address a related problem of breaking ground-state entanglement by measurements.
The messy quantum soup of spin states allows for quantum entanglement across an entire material.
New research reveals hints of quantum states in tiny proteins called microtubules inside brain cells. If the results stand up, the idea that consciousness is quantum might come in from the cold.
Scientists have made it possible to generate and control quantum states in different physical systems. This control allows scientists to develop powerful new quantum technologies. In addition, it offers a roadmap to test the foundations of quantum physics.
The main challenge is to create quantum states on a larger scale.
In collaboration with the University of Oxford, scientists at Imperial College London, the Niels Bohr Institute, the Max Planck Institute for the Science of Light, and Australian National University have generated and observed non-Gaussian states high-frequency sound waves comprising more than a trillion atoms. Certainly, they transformed a randomly fluctuating sound field in thermal equilibrium to a pattern thrumming with a more specific magnitude.
EK®, the leading computer cooling solutions provider, is proud to unveil its Special Edition high-performance GPU water blocks for the NVIDIA® GeForce® RTX™ 3,070 Ti Founders Edition graphics card. The EK-Quantum Vector FE RTX 3,070 Ti D-RGB comes in two versions – Silver and Black, both featuring the aluminum outer shell and backplate in the same color, as well as the Plexi window and terminal illuminated with addressable D-RGB LEDs.
This water block comes with multiple ports, allowing great versatility. The performance is one of the key elements of the design, which is why this block features a 30% larger fin area compared to other water blocks from the Vector family.
Topological order of the toric code type is realized in two synthetic quantum systems.
A new report from the Harvard Kennedy School found that China’s rapidly gaining steam in the realms of AI, 5G, quantum computing, biotechnology, and more.
The wildly inventive physicist John Wheeler was an early explorer of this notion. In a 1989 paper, “Information, Physics, Quantum: The Search for Links,” Wheeler takes a stab at “the age-old question: How come existence?” The answer, he speculates, might come from a fusion of physics and information theory. The former traffics in “its,” or physical things, and the latter in “bits,” defined as answers to yes-or-no questions.
Wheeler proposes that “every physical quantity, every it, derives its ultimate significance from bits, binary yes-or-no indications, a conclusion which we epitomize in the phrase, it from bit.” Noting the crucial role of measurement in the outcome of quantum experiments, Wheeler suggests that we live in a “participatory universe,” in which we bring the world into existence, and vice versa.
Picking up on Wheeler’s ideas, physicist Carlo Rovelli argues in a 1996 paper, “Relational Quantum Mechanics,” that quantum mechanics undermines “naive realism,” the notion that science discovers a reality that exists independently of our observation of it. He proposes what he calls a “relational” interpretation of quantum mechanics, which says things only exist in relation to other things. Rovelli notes that Galileo and Kant, among others, anticipated the relational perspective.
China has developed what it calls a Quantum Satellite System in a bid to combat any adversary intrusion into its power infrastructure. The country boasts the world’s largest national power grid.