Menu

Blog

Archive for the ‘quantum physics’ category: Page 465

Jul 8, 2020

Scientists introduce new method for machine learning classifications in quantum computing

Posted by in categories: quantum physics, robotics/AI, space

Quantum information scientists have introduced a new method for machine-learning classifications in quantum computing. The non-linear quantum kernels in a quantum binary classifier provide new insights for improving the accuracy of quantum machine learning, deemed able to outperform the current AI technology.

The research team led by Professor June-Koo Kevin Rhee from the School of Electrical Engineering, proposed a quantum classifier based on quantum state fidelity by using a different initial state and replacing the Hadamard classification with a swap test. Unlike the conventional approach, this method is expected to significantly enhance the classification tasks when the training dataset is small, by exploiting the quantum advantage in finding non-linear features in a large feature space.

Quantum machine learning holds promise as one of the imperative applications for . In machine learning, one for a wide range of applications is classification, a task needed for recognizing patterns in labeled training data in order to assign a label to new, previously unseen data; and the kernel method has been an invaluable classification tool for identifying non-linear relationships in complex data.

Jul 7, 2020

‘Light squeezer’ reduces quantum noise in lasers, could enhance quantum computing and gravitational-wave detection

Posted by in categories: computing, quantum physics

Physicists at MIT have designed a quantum “light squeezer” that reduces quantum noise in an incoming laser beam by 15 percent. It is the first system of its kind to work at room temperature, making it amenable to a compact, portable setup that may be added to high-precision experiments to improve laser measurements where quantum noise is a limiting factor.

The heart of the new squeezer is a marble-sized optical cavity, housed in a vacuum chamber and containing two mirrors, one of which is smaller than the diameter of a human hair. The larger mirror stands stationary while the other is movable, suspended by a spring-like cantilever.

The shape and makeup of this second “nanomechanical” mirror is the key to the system’s ability to work at room temperature. When a beam enters the cavity, it bounces between the two mirrors. The force imparted by the light makes the nanomechanical mirror swing back and forth in a way that allows the researchers to engineer the light exiting the cavity to have special quantum properties.

Jul 7, 2020

Team obtained high-level control of spin qubit lifetime based on silicon quantum dots

Posted by in categories: computing, quantum physics

By tuning the direction of the external magnetic field with respect to the crystallographic axis of the silicon wafer, an improvement of spin lifetime (relaxation time) by over two orders of magnitude was reported in silicon quantum dots. This breakthrough was carried out by a team led by academician Guo Guangcan from CAS Key Laboratory of Quantum Information, USTC, in which Prof. Guo Guoping, Prof. Li Hai-Ou with their colleagues and Origin Quantum Computing Company Limited. This work was published in Physical Review Letters on June 23, 2020.

Spin qubits based on silicon quantum dots have been a core issue in the development of large scale quantum computation due to its long coherence time and the compatibility with modern semiconductor technology. Recently, the relaxation time and dephasing time of spin qubits developed in Si MOS (Metal-Oxide-Semiconductor) and Si/SiGe heterostructure have surpassed hundreds of milliseconds and hundreds of microseconds, respectively, resulting in a single-qubit control fidelity over 99.9% and a two-qubit gate fidelity over 98%. With the success in college, labs and companies from the industry are starting to be involved in this field, such as Intel, CEA-Leti, and IMEC. However, the existence of valley states (a state associated with the dip in a particular electronic band) in silicon quantum dots could reduce spin relaxation time and dephasing time seriously via spin-valley mixing and limit the control fidelity of qubits.

Jul 7, 2020

Scientists create new device to light up the way for quantum technologies

Posted by in categories: computing, particle physics, quantum physics

Researchers at CRANN and Trinity’s School of Physics have created an innovative new device that will emit single particles of light, or photons, from quantum dots that are the key to practical quantum computers, quantum communications, and other quantum devices.

The team has made a significant improvement on previous designs in photonic systems via their device, which allows for controllable, directional emission of single photons and which produces entangled states of pairs of .

Jul 7, 2020

Clever Wiring Architecture Enables Bigger and Better Quantum Computers

Posted by in categories: quantum physics, supercomputing

Wiring a New Path to Scalable Quantum Computing

Last year, Google produced a 53-qubit quantum computer that could perform a specific calculation significantly faster than the world’s fastest supercomputer. Like most of today’s largest quantum computers, this system boasts tens of qubits—the quantum counterparts to bits, which encode information in conventional computers.

To make larger and more useful systems, most of today’s prototypes will have to overcome the challenges of stability and scalability. The latter will require increasing the density of signaling and wiring, which is hard to do without degrading the system’s stability. I believe a new circuit-wiring scheme developed over the last three years by RIKEN’s Superconducting Quantum Electronics Research Team, in collaboration with other institutes, opens the door to scaling up to 100 or more qubits within the next decade. Here, I discuss how.

Jul 6, 2020

A ‘breath of nothing’ provides a new perspective on superconductivity

Posted by in categories: particle physics, quantum physics

Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution. But so far, the origin of superconductivity at high temperature is only incompletely understood. Scientists from Universität Hamburg and the Cluster of Excellence “CUI: Advanced Imaging of Matter” have succeeded in observing strong evidence of superfluidity in a central model system, a two-dimensional gas cloud for the first time. The scientists report on their experiments in the journal Science, which allow to investigate key issues of high-temperature superconductivity in a very well-controlled model system.

There are things that aren’t supposed to happen. For example, water cannot flow from one glass to another through the glass wall. Surprisingly, allows this, provided the barrier between the two liquids is thin enough. Due to the quantum mechanical tunneling effect, particles can penetrate the barrier, even if the barrier is higher than the level of the liquids. Even more remarkably, this current can even flow when the level on both sides is the same or the current must flow slightly uphill. For this, however, the fluids on both sides must be superfluids, i.e. they must be able to flow around obstacles without friction.

This striking phenomenon was predicted by Brian Josephson during his doctoral thesis, and it is of such fundamental importance that he was awarded the Nobel Prize for it. The current is driven only by the wave nature of the superfluids and can, among other things, ensure that the begins to oscillate back and forth between the two sides—a phenomenon known as Josephson oscillations.

Jul 5, 2020

Laser allows solid-state refrigeration of a semiconductor material

Posted by in categories: energy, quantum physics

But lasers also show promise to do quite the opposite — to cool materials. Lasers that can cool materials could revolutionize fields ranging from bio-imaging to quantum communication.

In 2015, University of Washington researchers announced that they can use a laser to cool water and other liquids below room temperature. Now that same team has used a similar approach to refrigerate something quite different: a solid semiconductor. As the team shows in a paper published June 23 in Nature Communications, they could use an infrared laser to cool the solid semiconductor by at least 20 degrees C, or 36 F, below room temperature.

The device is a cantilever — similar to a diving board. Like a diving board after a swimmer jumps off into the water, the cantilever can vibrate at a specific frequency. But this cantilever doesn’t need a diver to vibrate. It can oscillate in response to thermal energy, or heat energy, at room temperature. Devices like these could make ideal optomechanical sensors, where their vibrations can be detected by a laser. But that laser also heats the cantilever, which dampens its performance.

Jul 5, 2020

Breakthrough Towards Lasers Powerful Enough to Investigate a New Kind of Physics

Posted by in categories: innovation, quantum physics

An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers.

In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers. This approach, based on the compression of light pulses, would make it possible to reach a threshold intensity for a new type of physics that has never been explored before: quantum electrodynamics phenomena.

Researchers Jean-Claude Kieffer of the Institut national de la recherche scientifique (INRS), E. A. Khazanov of the Institute of Applied Physics of the Russian Academy of Sciences and in France Gérard Mourou, Professor Emeritus of the Ecole Polytechnique, who was awarded the Nobel Prize in Physics in 2018, have chosen another direction to achieve a power of around 1023 Watts (W). Rather than increasing the energy of the laser, they decrease the pulse duration to only a few femtoseconds. This would keep the system within a reasonable size and keep operating costs down.

Jul 3, 2020

Welcome anyons! Physicists find best evidence yet for long-sought 2D structures

Posted by in categories: computing, particle physics, quantum physics

The ‘quasiparticles’ defy the categories of ordinary particles and herald a potential way to build quantum computers.

Jul 3, 2020

Toward lasers powerful enough to investigate a new kind of physics

Posted by in categories: innovation, quantum physics

In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers. This approach, based on the compression of light pulses, would make it possible to reach a threshold intensity for a new type of physics that has never been explored before: quantum electrodynamics phenomena.

Researchers Jean-Claude Kieffer of the Institut national de la recherche scientifique (INRS), E. A. Khazanov of the Institute of Applied Physics of the Russian Academy of Sciences and in France Gérard Mourou, Professor Emeritus of the Ecole Polytechnique, who was awarded the Nobel Prize in Physics in 2018, have chosen another direction to achieve a power of around 1023 watts (W). Rather than increasing the energy of the laser, they decrease the pulse duration to only a few femtoseconds. This would keep the system within a reasonable size and keep operating costs down.

To generate the shortest possible pulse, the researchers are exploiting the effects of non-linear optics. “A is sent through an extremely thin and perfectly homogeneous glass plate. The particular behavior of the wave inside this solid medium broadens the spectrum and allows for a shorter pulse when it is recompressed at the exit of the plate,” explains Jean-Claude Kieffer, co-author of the study published online on 15 June 2020 in the journal Applied Physics Letters.