Menu

Blog

Archive for the ‘quantum physics’ category: Page 402

Jun 26, 2021

In Extraordinary Experiment, Physicists Bring Human-Scale Object to Near Standstill, Reaching a Quantum State

Posted by in categories: particle physics, quantum physics

The results open possibilities for studying gravity’s effects on relatively large objects in quantum states.

To the human eye, most stationary objects appear to be just that — still, and completely at rest. Yet if we were handed a quantum lens, allowing us to see objects at the scale of individual atoms, what was an apple sitting idly on our desk would appear as a teeming collection of vibrating particles, very much in motion.

In the last few decades, physicists have found ways to super-cool objects so that their atoms are at a near standstill, or in their “motional ground state.” To date, physicists have wrestled small objects such as clouds of millions of atoms, or nanogram-scale objects, into such pure quantum states.

Jun 25, 2021

Achieving Precision in Quantum Material Simulations

Posted by in categories: chemistry, computing, particle physics, quantum physics

In fall of 2019, we demonstrated that the Sycamore quantum processor could outperform the most powerful classical computers when applied to a tailor-made problem. The next challenge is to extend this result to solve practical problems in materials science, chemistry and physics. But going beyond the capabilities of classical computers for these problems is challenging and will require new insights to achieve state-of-the-art accuracy. Generally, the difficulty in performing quantum simulations of such physical problems is rooted in the wave nature of quantum particles, where deviations in the initial setup, interference from the environment, or small errors in the calculations can lead to large deviations in the computational result.

In two upcoming publications, we outline a blueprint for achieving record levels of precision for the task of simulating quantum materials. In the first work, we consider one-dimensional systems, like thin wires, and demonstrate how to accurately compute electronic properties, such as current and conductance. In the second work, we show how to map the Fermi-Hubbard model, which describes interacting electrons, to a quantum processor in order to simulate important physical properties. These works take a significant step towards realizing our long-term goal of simulating more complex systems with practical applications, like batteries and pharmaceuticals.

Jun 25, 2021

MIT Makes a Significant Advance Toward the Full Realization of Quantum Computation

Posted by in categories: computing, engineering, information science, quantum physics

MIT researchers demonstrate a way to sharply reduce errors in two-qubit gates, a significant advance toward fully realizing quantum computation.

MIT researchers have made a significant advance on the road toward the full realization of quantum computation, demonstrating a technique that eliminates common errors in the most essential operation of quantum algorithms, the two-qubit operation or “gate.”

“Despite tremendous progress toward being able to perform computations with low error rates with superconducting quantum bits (qubits), errors in two-qubit gates, one of the building blocks of quantum computation, persist,” says Youngkyu Sung, an MIT graduate student in electrical engineering and computer science who is the lead author of a paper on this topic published on June 16, 2021, in Physical Review X. “We have demonstrated a way to sharply reduce those errors.”

Jun 25, 2021

Rare Superconductor Discovered – May Be Critical for the Future of Quantum Computing

Posted by in categories: energy, quantum physics, supercomputing

Research led by Kent and the STFC Rutherford Appleton Laboratory has resulted in the discovery of a new rare topological superconductor, LaPt3P. This discovery may be of huge importance to the future operations of quantum computers.

Superconductors are vital materials able to conduct electricity without any resistance when cooled below a certain temperature, making them highly desirable in a society needing to reduce its energy consumption.

They manifest quantum properties on the scale of everyday objects, making them highly attractive candidates for building computers that use quantum physics to store data and perform computing operations, and can vastly outperform even the best supercomputers in certain tasks. As a result, there is an increasing demand from leading tech companies like Google, IBM and Microsoft to make quantum computers on an industrial scale using superconductors.

Jun 25, 2021

Spintronics Advances: Efficient Magnetization Direction Control of Magnetite for High-Density Spintronic Memory Devices

Posted by in categories: computing, particle physics, quantum physics

Scientists develop an energy-efficient strategy to reversibly change ‘spin orientation’ or magnetization direction in magnetite at room temperature.

Over the last few decades, conventional electronics has been rapidly reaching its technical limits in computing and information technology, calling for innovative devices that go beyond the mere manipulation of electron current. In this regard, spintronics, the study of devices that exploit the “spin” of electrons to perform functions, is one of the hottest areas in applied physics. But, measuring, altering, and, in general, working with this fundamental quantum property is no mean feat.

Current spintronic devices — for example, magnetic tunnel junctions — suffer from limitations such as high-power consumption, low operating temperatures, and severe constraints in material selection. To this end, a team of scientists at Tokyo University of Science and the National Institute for Materials Science (NIMS), Japan, has published a study in ACS Nano, in which they present a surprisingly simple yet efficient strategy to manipulate the magnetization angle in magnetite (Fe3O4), a typical ferromagnetic material.

Jun 25, 2021

World-largest petawatt laser completed, delivering 2,000 trillion watts output

Posted by in categories: biotech/medical, mobile phones, nuclear energy, quantum physics, security

Circa 2015 In theory this big bang laser could eventually create complex matter but would need to be pocket-size as I want it on a smartphone to make a replicator so I can make fruit or food in space 😀


The Institute of Laser Engineering (ILE), Osaka University, has succeeded to reinforce the Petawatt laser “LFEX” to deliver up to 2000 trillion watts in the duration of one trillionth of one second (this corresponds to 1000 times the integrated electric power consumed in the world). By using this high-power laser, it is now possible to generate all of the high-energy quantum beams (electrons, ions, gamma ray, neutron, positron). Owing to such quantum beams with large current, we can make a big step forward not only for creating new fundamental technologies such as medical applications and non-destructive inspection of social infrastructures to contribute to our future life of longevity, safety, and security, but also for realization of laser fusion energy triggered by fast ignition.

Background and output of research

Continue reading “World-largest petawatt laser completed, delivering 2,000 trillion watts output” »

Jun 24, 2021

Researchers propose the use of quantum cascade lasers to achieve private free-space communications

Posted by in categories: quantum physics, security

Free-space optical communication, the communication between two devices at a distance using light to carry information, is a highly promising system for achieving high-speed communication. This system of communication is known to be immune to electromagnetic interference (EMI), a disturbance generated by external sources that affects electrical circuits and can disrupt radio signals.

While some studies have highlighted the possible advantages of free-space optical communication, this system of communication has so far come with certain limitations. Most notably, it is known to offer limited security against eavesdroppers. Researchers at Télécom Paris (member of Institut Polytechnique de Paris), mirSense, Technische Universität Darmstadt and University of California Los Angeles (UCLA) have recently introduced a unique system for more secure free-space optical communication based on a technology known as , a specific type of semiconductor that typically emits mid–.

“The core idea behind our research is that private free-space communication with quantum key distribution (i.e., based on quantum physics properties) is promising, but it is probably years away, or even further,” Olivier Spitz, one of the researchers who carried out the study, told TechXplore. “Currently, the main limitations of this technology are the requirements for cryogenic systems, very slow data rates and costly equipment.”

Jun 24, 2021

Quantum simulation: Measurement of entanglement made easier

Posted by in categories: quantum physics, supercomputing

University of Innsbruck researchers have developed a method to make previously hardly accessible properties in quantum systems measurable. The new method for determining the quantum state in quantum simulators reduces the number of necessary measurements and makes work with quantum simulators much more efficient.

In a few years, a new generation of could provide insights that would not be possible using simulations on conventional supercomputers. Quantum simulators are capable of processing a great amount of information since they quantum mechanically superimpose an enormously large number of bit states. For this reason, however, it also proves difficult to read this information out of the quantum . In order to be able to reconstruct the , a very large number of individual measurements are necessary. The method used to read out the quantum state of a quantum simulator is called quantum state tomography.

“Each measurement provides a ‘cross-sectional image’ of the quantum state. You then put these cross-sectional images together to form the complete quantum state,” explains theoretical physicist Christian Kokail from Peter Zoller’s team at the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences and the Department of Experimental Physics at the University of Innsbruck. The number of measurements needed in the lab increases very rapidly with the size of the system. “The number of measurements grows exponentially with the number of qubits,” the physicist says. The Innsbruck researchers have now succeeded in developing a much more efficient method for quantum simulators.

Jun 23, 2021

Immortal quantum particles

Posted by in categories: particle physics, quantum physics

Circa 2019


Decay is relentless in the macroscopic world: broken objects do not fit themselves back together again. However, other laws are valid in the quantum world: new research shows that so-called quasiparticles can decay and reorganize themselves again and are thus become virtually immortal. These are good prospects for the development of durable data memories.

Jun 23, 2021

UK company to start sending secret quantum keys with satellites in 2023

Posted by in categories: encryption, quantum physics, satellites

U.K. start-up Arqit expects to launch a worldwide service for sharing unbreakable quantum-encrypted messages using satellites in 2023.