Menu

Blog

Archive for the ‘quantum physics’ category: Page 404

Sep 15, 2020

TECHNOCULTURE: The Rise of Man | The Cybernetic Theory of Mind

Posted by in categories: evolution, food, mobile phones, neuroscience, quantum physics, sex

What has been shaping the human mind throughout the history of mankind? What is the difference between mind and consciousness? What links quantum physics to consciousness? What gives rise to our subjective experience? What drives our accelerating evolution?

If you’re eager to familiarize with probably the most advanced ontological framework to date or if you’re already familiar with the Syntellect Hypothesis which, with this series, is now presented to you as the full-fledged Cybernetic Theory of Mind, you should get this book two of the series which corresponds to Part II of The Syntellect Hypothesis: Five Paradigms of the Mind’s Evolution. This volume two contains some newly-introduced and updated material if compared with the originally published version and can be read as a stand-alone book. At the same time, it is highly recommended to obtain The Syntellect Hypothesis as the original coherent version of the same theoretical framework instead of waiting for all five books to come out and if you don’t need extra detailing.

Continue reading “TECHNOCULTURE: The Rise of Man | The Cybernetic Theory of Mind” »

Sep 15, 2020

IBM plans a huge leap in superfast quantum computing by 2023

Posted by in categories: computing, quantum physics

Tucked in the back of a laboratory at the IBM Research facility less than an hour north of New York City is a hulking mass of stainless steel and aluminum that looks like a sci-fi teleportation machine.


IBM promises a super-powerful quantum computer by decade’s end as it races against Google, Honeywell, and other rivals.

Sep 15, 2020

IBM publishes its quantum roadmap, says it will have a 1,000-qubit machine in 2023

Posted by in categories: computing, quantum physics

IBM today, for the first time, published its road map for the future of its quantum computing hardware. There is a lot to digest here, but the most important news in the short term is that the company believes it is on its way to building a quantum processor with more than 1,000 qubits — and somewhere between 10 and 50 logical qubits — by the end of 2023.

Currently, the company’s quantum processors top out at 65 qubits. It plans to launch a 127-qubit processor next year and a 433-qubit machine in 2022. To get to this point, IBM is also building a completely new dilution refrigerator to house these larger chips, as well as the technology to connect multiple of these units to build a system akin to today’s multi-core architectures in classical chips.

Sep 14, 2020

Quantum startup CEO suggests we are only five years away from a quantum desktop computer

Posted by in categories: computing, quantum physics

Today at TechCrunch Disrupt 2020, leaders from three quantum computing startups joined TechCrunch editor Frederic Lardinois to discuss the future of the technology. IonQ CEO and president Peter Chapman suggested we could be as little as five years away from a desktop quantum computer, but not everyone agreed on that optimistic timeline.

“I think within the next several years, five years or so, you’ll start to see [desktop quantum machines]. Our goal is to get to a rack-mounted quantum computer,” Chapman said.

But that seemed a tad optimistic to Alan Baratz, CEO at D-Wave Systems. He says that when it comes to developing the super-conducting technology that his company is building, it requires a special kind of rather large quantum refrigeration unit called a dilution fridge, and that unit would make a five-year goal of having a desktop quantum PC highly unlikely.

Sep 14, 2020

The Hall effect links superconductivity and quantum criticality in a strange metal

Posted by in categories: materials, quantum physics

Over the past few decades, researchers have identified a number of superconducting materials with atypical properties, known as unconventional superconductors. Many of these superconductors share the same anomalous charge transport properties and are thus collectively characterized as “strange metals.”

Researchers at the University of California, Berkeley (UC Berkeley) and Los Alamos National Laboratory have been investigating the anomalous transport properties of strange metals, along with several other teams worldwide. In a recent paper published in Nature Physics, they showed that in one of these materials, BaFe2(As1− xPx)2, superconductivity and quantum criticality are linked by what is known as the Hall effect.

For decades, physicists have been unable to fully understand T-linear resistivity, a signature of strange metals that has often been observed in many unconventional superconductors. In 2016, the team at UC Berkeley and Los Alamos National Lab observed an unusual scaling relationship between the and temperature in superconductor BaFe2(As1− xPx)2.

Sep 13, 2020

Quantum Leap for Speed Limit Bounds: How Fast Can Anything – Information, Mass, Energy – Move in Nature?

Posted by in categories: energy, quantum physics

Rice physicists set far-more-accurate limits on speed of quantum information.

Nature’s speed limits aren’t posted on road signs, but Rice University physicists have discovered a new way to deduce them that is better — infinitely better, in some cases — than previous methods.

“The big question is, ‘How fast can anything — information, mass, energy — move in nature?’” said Kaden Hazzard, a theoretical quantum physicist at Rice. “It turns out that if somebody hands you a material, it is incredibly difficult, in general, to answer the question.”

Sep 13, 2020

Spin-Based Quantum Computing Breakthrough: Physicists Achieve Tunable Spin Wave Excitation

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

Physicists from MIPT and the Russian Quantum Center, joined by colleagues from Saratov State University and Michigan Technological University, have demonstrated new methods for controlling spin waves in nanostructured bismuth iron garnet films via short laser pulses. Presented in Nano Letters, the solution has potential for applications in energy-efficient information transfer and spin-based quantum computing.

A particle’s spin is its intrinsic angular momentum, which always has a direction. In magnetized materials, the spins all point in one direction. A local disruption of this magnetic order is accompanied by the propagation of spin waves, whose quanta are known as magnons.

Unlike the electrical current, spin wave propagation does not involve a transfer of matter. As a result, using magnons rather than electrons to transmit information leads to much smaller thermal losses. Data can be encoded in the phase or amplitude of a spin wave and processed via wave interference or nonlinear effects.

Sep 11, 2020

Laser cooling of larger quantum objects

Posted by in category: quantum physics

Surfers have a concept they call progression. It is roughly the idea that each successive generation of wave riders is not constrained by the same idea of what is “impossible.” Progression often comes in small steps, usually helped by improvements in technology but every so often—like Laird Hamilton’s Millennium Wave at Teahupoo, Tahiti (1)—it comes in a giant leap when somebody does what everyone else was too scared to try. On page 1366 of this issue, Mitra et al. (2) have progressed molecular physics in a step that was unthinkable only a few years ago by laser-cooling a nonlinear polyatomic molecule, CaOCH3.

http://www.sciencemag.org/about/science-licenses-journal-article-reuse

This is an article distributed under the terms of the Science Journals Default License.

Sep 11, 2020

Study identifies limits on the efficiency of techniques for reducing noise in quantum resources

Posted by in categories: computing, quantum physics

Quantum technologies, such as quantum computers, quantum sensing devices and quantum memory, have often been found to outperform traditional electronics in speed and performance, and could thus soon help humans to tackle a variety of problems more efficiently. Despite their huge potential, most quantum systems are inherently susceptible to errors and noise, which poses a serious challenge to implementing and using them in real-world settings.

Sep 10, 2020

Quirky response to magnetism presents quantum physics mystery

Posted by in categories: particle physics, quantum physics

The search is on to discover new states of matter, and possibly new ways of encoding, manipulating, and transporting information. One goal is to harness materials’ quantum properties for communications that go beyond what’s possible with conventional electronics. Topological insulators—materials that act mostly as insulators but carry electric current across their surface—provide some tantalizing possibilities.

“Exploring the complexity of topological materials—along with other intriguing emergent phenomena such as and superconductivity—is one of the most exciting and challenging areas of focus for the materials science community at the U.S. Department of Energy’s Brookhaven National Laboratory,” said Peter Johnson, a senior physicist in the Condensed Matter Physics & Materials Science Division at Brookhaven. “We’re trying to understand these topological insulators because they have lots of potential applications, particularly in quantum information science, an important new area for the division.”

For example, materials with this split insulator/conductor personality exhibit a separation in the energy signatures of their surface electrons with opposite “spin.” This quantum property could potentially be harnessed in “spintronic” devices for encoding and transporting information. Going one step further, coupling these electrons with magnetism can lead to novel and exciting phenomena.