Toggle light / dark theme

Scientists closer to finding quantum gravity theory after measuring gravity on microscopic level

Scientists are a step closer to unraveling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force that was discovered by Isaac Newton works in the tiny quantum world. Even Einstein was baffled by quantum gravity and, in his , said there is no realistic experiment that could show a quantum version of gravity.

But now physicists at the University of Southampton, working with scientists in Europe, have successfully detected a weak gravitational pull on a tiny particle using a new technique.

The quantum world: Dreams and delusions | Roger Penrose, Sabine Hossenfelder, Michio Kaku, and more!

Watch some of the biggest names in physics debate the mysteries of the quantum and its future, including Roger Penrose, Sabine Hossenfelder, Avshalom Elitzur, Michio Kaku, Suchitra Sebastian, Priya Natarajan, Joscha Bach, Erik Verlinde, Hilary Lawson and Bjørn Ekeberg.

From string theory to quantum gravity and quantum computers, the quantum discourse is all the buzz in physics and beyond. But what is possible and what mere fantasy? Can we bring together relativity and quantum mechanics? Will we ever find a unified theory to explain our universe?

00:00 Introduction.
00:45 Why is modern physics in crisis | Roger Penrose, Sabine Hossenfelder, Priya Natarajan, Erik Verlinde.
15:44 Are we at the cusp of a revolution? | Avshalom Elitzur, Michio Kaku, Joscha Bach, Bjørn Ekerberg.
28:06 What is quantum emergence? | Suchitra Sebastian.

#quantumemergence #relativity #quantumphysics.

Debates and talks featured:
The trouble with time (London, 2023)
https://iai.tv/video/the-trouble-with
Mystery of emergence (London, 2023)
https://iai.tv/video/the-mystery-of-e
Gravity and the universe (London, 2023)
https://iai.tv/video/gravity-and-the–
Imagining the universe (Hay, 2023)
https://iai.tv/video/imagining-the-un
The secrets of quantum emergence (Hay, 2023)
https://iai.tv/video/the-secrets-of-q
The quantum hoax (Hay, 2023)
https://iai.tv/video/the-quantum-hoax
Reality models and mayhem (Hay, 2023)
https://iai.tv/video/reality-models-a
The quantum age (IAI Live, 2023)
https://iai.tv/video/the-quantum-age–
The Institute of Art and Ideas features videos and articles from cutting edge thinkers discussing the ideas that are shaping the world, from metaphysics to string theory, technology to democracy, aesthetics to genetics. Subscribe today! https://iai.tv/subscribe?utm_source=Y

For debates and talks: https://iai.tv.

Photon Detectors Rewrite the Rules of Quantum Computing

Scientists achieve breakthrough in quantum optics with photon detector-based method, paving the way for improved quantum computing.

Scientists at Paderborn University have used a new method to determine the characteristics of optical, i.e. light-based, quantum states. For the first time, they are using certain photon detectors — devices that can detect individual light particles — for so-called homodyne detection. The ability to characterize optical quantum states makes the method an essential tool for quantum information processing. Precise knowledge of the characteristics is important for use in quantum computers, for example. The results have now been published in the specialist journal Optica Quantum.

Advancements in Homodyne Detection.

The 10 Stages of Artificial Intelligence

This definitely is a Lifeboat post embodying what Lifeboat is about, and it’s only about AI. They did a really good job explaining the 10 stages.


This video explores the 10 stages of AI, including God-Like AI. Watch this next video about the Technological Singularity: • Technological Singularity: 15 Ways It…
🎁 5 Free ChatGPT Prompts To Become a Superhuman: https://bit.ly/3Oka9FM
🤖 AI for Business Leaders (Udacity Program): https://bit.ly/3Qjxkmu.
☕ My Patreon: / futurebusinesstech.
➡️ Official Discord Server: / discord.

SOURCES:
• / whats-next-ai-10-stages-igor-van-gemert.
• The Singularity Is Near: When Humans Transcend Biology (Ray Kurzweil): https://amzn.to/3ftOhXI

💡 Future Business Tech explores the future of technology and the world.

Examples of topics I cover include:

Resurrecting niobium for quantum science

For years, niobium was considered an underperformer when it came to superconducting qubits. Now, scientists supported by Q-NEXT have found a way to engineer a high-performing niobium-based qubit and take advantage of niobium’s superior qualities.

When it comes to , niobium is making a comeback.

For the past 15 years, niobium has been sitting on the bench after experiencing a few mediocre at-bats as a core qubit material.

How to track important changes in a dynamic network

Networks can represent changing systems, like the spread of an epidemic or the growth of groups in a population of people. But the structure of these networks can change, too, as links appear or vanish over time. To better understand these changes, researchers often study a series of static “snapshots” that capture the structure of the network during a short duration.

Network theorists have sought ways to combine these snapshots. In a new paper in Physical Review Letters, a trio of SFI-affiliated researchers describe a novel way to aggregate static snapshots into smaller clusters of networks while still preserving the dynamic nature of the system. Their method, inspired by an idea from quantum mechanics, involves testing successive pairs of network snapshots to find those for which a combination would result in the smallest effect on the dynamics of the system—and then combining them.

Importantly, it can determine how to simplify the history of the network’s structure as much as possible while maintaining accuracy. The math behind the method is fairly simple, says lead author Andrea Allen, now a data scientist at Children’s Hospital of Philadelphia.

/* */