Toggle light / dark theme

From Common White Powder to Quantum Innovation: Unlocking Nearly Noiseless Qubits

Researchers discovered that bismuth atoms embedded in calcium oxide can function as qubits for quantum computers, providing a low-noise, durable, and inexpensive alternative to current materials. This groundbreaking study highlights its potential to transform quantum computing and telecommunications.

Calcium oxide is an inexpensive, chalky chemical compound frequently used in the manufacturing of cement, plaster, paper, and steel. However, the common material may soon have a more high-tech application.

Scientists used theoretical and computational approaches to discover how tiny, lone atoms of bismuth embedded within solid calcium oxide can act as qubits — the building blocks of quantum computers and quantum communication devices. These qubits were described by University of Chicago Pritzker School of Molecular Engineering researchers and their collaborator in Sweden on June 6 in the scientific journal Nature Communications.

New quantum random number generator achieves 2 Gbit/s speed

The reliable generation of random numbers has become a central component of information and communications technology. In fact, random number generators, algorithms or devices that can produce random sequences of numbers, are now helping to secure communications between different devices, produce statistical samples, and for various other applications.

“Spooky action at a distance” confirmed in heaviest particles

Physicists have delved deeper into the enigmatic world of quantum entanglement and top quarks, bringing a new level of understanding to a phenomenon that even Albert Einstein found perplexing.

This incredible feat has the potential to revolutionize our understanding of the quantum realm and its far-reaching implications.

The experiment, conducted by a team of researchers led by University of Rochester physics professor Regina Demina at the European Center for Nuclear Research (CERN), has yielded a significant result.

Dark matter turns out to be an echo of a parallel Universe

The study is based on several intriguing coincidences. First, observations show that there is about the same amount of ordinary and dark matter, which exceeds baryonic by about five times. And secondly, neutrons and protons have almost the same mass, which allows them to form stable atoms — this is a random but stable property of the quantum world, because otherwise our universe would not be home to any of the atoms that make up stars, planets and ourselves.

In fact, the theory suggests that there may be a parallel universe like ours in which neutrons and protons do not have such convenient symmetry in mass. In this world, there is a “soup” of subatomic particles that interact little, which explains why dark matter does not seem to clump together.

It is important to note that this is just one more of many hypotheses that try to explain the mystery of dark matter – an annoying and lingering unknown in our understanding of the universe.

Fascinating behavior of “super photons” in the quantum realm

Have you ever wondered what happens when thousands of particles of light merge into a single entity? This phenomenon, known as a “super photon,” has fascinated physicists for years.

Now, researchers have made an intriguing discovery that broadens our understanding of this exotic quantum state.

Dr. Julian Schmitt and his colleagues from the Institute of Applied Physics at the University of Bonn have shown that photon Bose-Einstein condensates, also known as quantum gases, obey a fundamental theorem of physics.

/* */