Toggle light / dark theme

An international research team has succeeded for the first time in measuring the electron spin in matter—i.e., the curvature of space in which electrons live and move—within “kagome materials,” a new class of quantum materials.

The results obtained—published in Nature Physics —could revolutionize the way quantum materials are studied in the future, opening the door to new developments in quantum technologies, with in a variety of technological fields, from to biomedicine, from electronics to quantum computers.

Success was achieved by an international collaboration of scientists, in which Domenico Di Sante, professor at the Department of Physics and Astronomy “Augusto Righi,” participated for the University of Bologna as part of his Marie Curie BITMAP research project. He was joined by colleagues from CNR-IOM Trieste, Ca’ Foscari University of Venice, University of Milan, University of Würzburg (Germany), University of St. Andrews (UK), Boston College and University of Santa Barbara (U.S.).

Scientists from the Radboud University have developed synthetic molecules that resemble real organic molecules. A collaboration of researchers, led by Alex Khajetoorians and Daniel Wegner, can now simulate the behavior of real molecules by using artificial molecules. In this way, they can tweak properties of molecules in ways that are normally difficult or unrealistic, and they can understand much better how molecules change.

Their paper is published in the journal Science.

Emil Sierda, who was in charge of conducting the experiments at Radboud University said, “A few years ago we had this crazy idea to build a . We wanted to create that resembled real molecules. So we developed a system in which we can trap electrons. Electrons surround a molecule like a cloud, and we used those trapped electrons to build an artificial molecule.” The results the team found were astonishing. Sierda says, “The resemblance between what we built and real molecules was uncanny.”

The Big Bang, traditionally considered the birth of the universe about 14 billion years ago, is being questioned. Physicist Bruno Bento and his team have proposed compelling research suggesting the universe may have always existed, and the Big Bang may merely be a significant event in its continuous evolution.

Bruno Bento and his colleagues set out to examine what the universe’s inception might have looked like without a Big Bang singularity. They grappled with contradictions arising when comparing accepted theories, particularly those dealing with quantum physics and general relativity. While quantum physics has accurately described three of the four fundamental forces of nature, it struggles to incorporate gravity. On the other hand, general relativity offers a comprehensive explanation of gravity, but falters when dealing with black holes’ centers and the universe’s genesis.

These contentious areas, termed “singularities,” are points in space-time where established physical laws cease to apply. Intriguingly, computations indicate an immense gravitational pull within singularities, even on a minuscule scale.