Gravity is no longer a mystery to physicists—at least when it comes to large distances. Thanks to science, we can calculate the orbits of planets, predict tides, and send rockets into space with precision. However, the theoretical description of gravity reaches its limits at the level of the smallest particles, the so-called quantum level.
Microsoft and Atom Computing aim to capitalize on a qubit-virtualization system that Microsoft and Quantinuum say has broken a logical-qubit creation record.
An international team of researchers has found a surprisingly simple relationship between the rates of energy and information transmission across an interface connecting two quantum field theories. Their work was published in Physical Review Letters on August 30.
The atom’s nucleus could safely store quantum data, with controlled wobbling making it possible:
According to the researchers, the spin state or direction of the spin of a nucleus can be used to hold quantum information.
“This magnetism, the “spin” in quantum language, can be seen as a sort of compass needle that can point in various directions. The orientation of the spin at a given time constitutes a piece of quantum information,” the study authors said.
However, even if you store quantum information inside the spin of a nucleus, it’s challenging to read and manipulate the stored information as the nucleus has a tiny size and is influenced by the activity of surrounding particles.
A novel scattering-mitigation scheme, using only an integrating sphere, is experimentally shown to recover nearly 50% of mutual information in two-mode squeezed states, despite large photon losses.
A research team discovered a method to transform materials with three-dimensional atomic structures into nearly two-dimensional structures – a promising advancement in controlling their properties for chemical, quantum, and semiconducting applications.
The field of materials chemistry seeks to understand, at an atomic level, not only the substances that comprise the world but also how to intentionally design and manufacture them. A pervasive challenge in this field is the ability to precisely control chemical reaction conditions to alter the crystal structure of materials—how their atoms are arranged in space with respect to each other. Controlling this structure is critical to attaining specific atomic arrangements that yield unique behaviors. This process results in novel materials with desirable characteristics for practical applications.
A team of researchers led by the National Renewable Energy Laboratory (NREL), with contributions from the Colorado School of Mines (Mines), National Institute of Standards and Technology, and Argonne National Laboratory, discovered a method to convert materials from their higher-energy (or metastable) state to their lower-energy, stable state while instilling an ordered and nearly two-dimensional arrangement of atoms—a feat that has the potential to unleash promising material properties.
More recently, in a period where we upgraded our H2 system from 32 to 56 qubits and demonstrated the scalability of our QCCD architecture, we also hit a quantum volume of over two million, and announced that we had achieved “three 9’s” fidelity, enabling real gains in fault-tolerance – which we proved within months as we demonstrated the most reliable logical qubits in the world with our partner Microsoft.
We don’t just promise what the future might look like; we demonstrate it.
Today, at Quantum World Congress, we shared how recent developments by our integrated hardware and software teams have, yet again, accelerated our technology roadmap. It is with the confidence of what we’ve already demonstrated that we can uniquely announce that by the end of this decade Quantinuum will achieve universal fully fault-tolerant quantum computing, built on foundations such as a universal fault-tolerant gate set, high fidelity physical qubits uniquely capable of supporting reliable logical qubits, and a fully-scalable architecture.