Toggle light / dark theme

Researchers at Fudan University in China have recently been trying to identify new promising quantum anomalous Hall insulators. Their latest paper, published in Physical Review Letters, outlines the unique characteristics of monolayer V2MX4, which could belong to a new family of quantum anomalous Hall insulators.

“Finding intrinsic quantum anomalous Hall materials is an important goal in topological material research,” Jing Wang, co-author of the paper, told Phys.org. “After we predicted MnBi2Te4, a paradigm example of magnetic topological and exhibiting quantum anomalous Hall effect in odd layer, we have been thinking about finding new intrinsic quantum anomalous Hall insulator with large gap.”

Large-gap quantum anomalous Hall insulator materials exhibit a quantum anomalous Hall effect with a relatively large energy gap between the valence and . These materials should exhibit a synergy between two seemingly conflicting properties, namely spin-orbit coupling and ferromagnetism.

In recent years, artificial intelligence technologies, especially machine learning algorithms, have made great strides. These technologies have enabled unprecedented efficiency in tasks such as image recognition, natural language generation and processing, and object detection, but such outstanding functionality requires substantial computational power as a foundation.

The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.

Quantum computers use so-called qubits, which are not either zero or one as in conventional logic circuits, but can take on any value in between. These qubits are realized by highly cooled atoms, ions, or superconducting circuits, and it is still physically very complex to build a quantum computer with many qubits. However, mathematical methods can already be used to explore what fault-tolerant quantum computers could achieve in the future.

“There are a lot of myths about it, and sometimes a certain amount of hot air and hype. But we have approached the issue rigorously, using mathematical methods, and delivered solid results on the subject. Above all, we have clarified in what sense there can be any advantages at all,” says Prof. Dr. Jens Eisert, who heads a joint research group at Freie Universität Berlin and Helmholtz-Zentrum Berlin.

Physicists in the MIT-Harvard Center for Ultracold Atoms (CUA) have developed a new approach to control the outcome of chemical reactions. This is traditionally done using temperature and chemical catalysts, or more recently with external fields (electric or magnetic fields, or laser beams).

MIT CUA physicists have now added a new twist to this: They have used minute changes in a magnetic field to make subtle changes to the quantum mechanical wavefunction of the colliding particles during the chemical reaction. They show how this technique can steer reactions to a different outcome: enhancing or suppressing reactions.

This was only possible by working at ultralow temperatures at a millionth of a degree above absolute zero, where collisions and chemical reactions occur in single quantum states. Their research was published in Science on March 4.

The results, continuing the legacy of late Columbia professor Aron Pinczuk, are a step toward a better understanding of gravity.

A team of scientists from Columbia, Nanjing University, Princeton, and the University of Munster, writing in the journal Nature, have presented the first experimental evidence of collective excitations with spin called chiral graviton modes (CGMs) in a semiconducting material.

A CGM appears to be similar to a graviton, a yet-to-be-discovered elementary particle better known in high-energy quantum physics for hypothetically giving rise to gravity, one of the fundamental forces in the universe, whose ultimate cause remains mysterious.

A new device consisting of a semiconductor ring produces pairs of entangled photons that could be used in a photonic quantum processor.

Quantum light sources produce entangled pairs of photons that can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from the semiconductor gallium nitride. This material provides a versatile platform for device fabrication, having previously been used for on-chip lasers, detectors, and waveguides. Combined with these other optical components, the new quantum light source opens up the potential to construct a complex quantum circuit, such as a photonic quantum processor, on a single chip.

Quantum optics is a rapidly advancing field, with many experiments using photons to carry quantum information and perform quantum computations. However, for optical systems to compete with other quantum information technologies, quantum-optics devices will need to be shrunk from tabletop size to microchip size. An important step in this transformation is the development of quantum light generation on a semiconductor chip. Several research teams have managed this feat using materials such as gallium aluminum arsenide, indium phosphide, and silicon carbide. And yet a fully integrated photonic circuit will require a range of components in addition to quantum light sources.