Toggle light / dark theme

Neil deGrasse Tyson and Brian Greene Confront the Edge of our Understanding

How do particles get mass? Neil deGrasse Tyson and comedian Chuck Nice discover squarks, sneutrinos, the Higgs boson, and whether dark matter has a particle with theoretical physicist Brian Greene.

Go to https://ground.news/startalk to stay fully informed on Space and Science news. Save 40% off through my link for unlimited access to the Vantage plan this month.

Can we finally get to the bottom of what happens when a quark falls into a black hole? Learn about the ultraviolet catastrophe, the start of quantum physics, and Max Planck quantizing packets of energy. We also discuss how Einstein won the Nobel prize for the discovery for which he is least famous.

We take a deep dive into the Higgs boson. Who’s Higgs? What’s a boson? Find out about how the Higgs field creates mass, the different quantum particles, and how quarks create protons and neutrons. Brian breaks down the theory of supersymmetry: does every particle have a counterpart? Learn about squarks, sneutrinos, and whether supersymmetry can give an answer to what dark matter is.

Is the fabric of spacetime woven by tiny wormholes? Discover the Casimir force, quantum fluctuations, and why you need so many dimensions in a string theory universe. We discuss whether the cosmological constant is, in fact, constant. Plus, find out about the biggest mismatch between theory and experiment in physics.

Timestamps:

The Science of Star Trek with Dr. Charles Liu

Find out more about Bitdefender’s two decades of unparalleled cybersecurity excellence: https://bitdefend.me/StarTalkTA

Could we create warp drive someday? In this Star Trek-themed episode, Neil deGrasse Tyson and co-host Chuck Nice team up with astrophysicist Charles Liu to dive into the science, technology, and legacy of one of the most influential sci-fi franchises of all time: Star Trek.

We answer questions about quantum entanglement, the size of electrons, and the real science behind Trek tech or Treknology. How close are we to warp drives, transporters, and subspace communication? You might be surprised to hear what’s theoretically possible and what remains in the realm of science fiction.

We discuss technology that exists already and the solutions to storytelling challenges through warp drives and dilithium crystals. Learn about the show’s physics, from phasers and antimatter to the mycelium network’s fascinating parallels with fungal biology. How do you store antimatter without it annihilating? Plus, find out who everyone’s favorite characters are and who they relate to most.

As we reflect on the series’ 23rd-century vision, we ask: Could humanity achieve Trek-level tech by 2260? We discuss the physics we’re missing and the collective imagination and determination it takes to advance our understanding of the universe.

Get ‘The Handy Quantum Physics Answer Book’: https://amzn.to/4frhizV

A single-shot trick can boost the signal strength of tin-based qubits

However, until now, “measuring this qubit’s spin was like trying to pick up a very, very weak light signal, like trying to squint at some dim light to determine whether the qubit was spin-up or spin-down,” Eric Rosenthal, a postdoctoral scholar at Stanford University, said.

This is where a new study from Rosenthal and his team can make a big difference. They have figured out a way to measure the spin of tin-based qubits with 87 percent accuracy, enhancing the strength of signals from these qubits to a great extent.

A tin vacancy qubit is formed when two carbon atoms in a diamond are replaced by a single tin atom. This tin center has exceptional optical properties as it emits photons in the telecom wavelength range, which is highly suitable for quantum communication applications.

Shape of electrons is revealed for the first time through big advance in quantum physics

For the first time, researchers have measured the shape of an electron as it moves through a solid. This achievement could open a new way of looking at how electrons behave inside different materials.

Their discovery highlights many effects that could be relevant to everything from quantum information science to electronics manufacturing.

Those findings come from a team led by physicist Riccardo Comin, MIT’s Class of 1947 Career Development Associate Professor of Physics and leader of the work, in collaboration with other institutions.

Clocking nature’s heaviest elementary particle: CMS tests whether top quarks play by Einstein’s rules

In the first study of its kind at the Large Hadron Collider (LHC), the CMS collaboration has tested whether top quarks adhere to Einstein’s special theory of relativity. The research is published in the journal Physics Letters B.

Along with , Einstein’s special theory of relativity serves as the basis of the Standard Model of particle physics. At its heart is a concept called Lorentz symmetry: experimental results are independent of the orientation or the speed of the experiment with which they are taken.

Special relativity has stood the test of time. However, some theories, including particular models of string theory, predict that, at very high energies, special relativity will no longer work and experimental observations will depend on the orientation of the experiment in space-time.

Engineering the first semimetallic Weyl quantum crystal

An international team of researchers led by the Strong Correlation Quantum Transport Laboratory of the RIKEN Center for Emergent Matter Science (CEMS) has demonstrated, in a world’s first, an ideal Weyl semimetal, marking a breakthrough in a decade-old problem of quantum materials.

Weyl fermions arise as collective quantum excitations of electrons in crystals. They are predicted to show exotic electromagnetic properties, attracting intense worldwide interest.

However, despite the careful study of thousands of crystals, most Weyl materials to date exhibit electrical conduction governed overwhelmingly by undesired, trivial electrons, obscuring the Weyl fermions. At last, researchers have synthesized a material hosting a single pair of Weyl fermions and no irrelevant electronic states.

Quantum computer efficiently suppresses errors with two different correction codes

Computers also make mistakes. These are usually suppressed by technical measures or detected and corrected during the calculation. In quantum computers, this involves some effort, as no copy can be made of an unknown quantum state. This means that the state cannot be saved multiple times during the calculation and an error cannot be detected by comparing these copies.

Inspired by classical computer science, has developed a different method in which the is distributed across several entangled and stored redundantly in this way. How this is done is defined in so-called correction codes.

In 2022, a team led by Thomas Monz from the Department of Experimental Physics at the University of Innsbruck and Markus Müller from the Department of Quantum Information at RWTH Aachen and the Peter Grünberg Institute at Forschungszentrum Jülich in Germany implemented a universal set of operations on fault-tolerant quantum bits, demonstrating how an algorithm can be programmed on a quantum computer so that errors can be corrected efficiently.

/* */