Toggle light / dark theme

Physicists Discover a Magnetic Breakthrough That Could Supercharge Quantum Tech

Scientists have found a new way to control quantum information using a special material, chromium sulfide bromide.

It can store and process data in multiple forms, but its magnetic properties are the real game-changer. By adjusting its magnetization, researchers can confine excitons—quantum particles that carry information—allowing for longer-lasting quantum states and new ways to process data.

Quantum “Miracle Material” Enables Magnetic Switching.

New calculation links disparate pion reactions in nuclear physics

An early-career physicist mathematically connects timelike and spacelike form factors, opening the door to further insights into the inner workings of the strong force. A new lattice QCD calculation connects two seemingly disparate reactions involving the pion, the lightest particle governed by the strong interaction.

As an undergraduate student at Tecnológico de Monterrey in Mexico, Felipe Ortega-Gama worked at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility as part of the Science Undergraduate Laboratory Internships program. There, Ortega-Gama worked with Raúl Briceño, who was a jointly appointed staff scientist in the lab’s Center for Theoretical and Computational Physics (Theory Center) and professor at Old Dominion University.

Briceño introduced him to quantum chromodynamics (QCD), the theory that describes the strong interaction. This is the force that binds quarks and gluons together to form protons, neutrons and other particles generically called hadrons. Theorists use lattice QCD, a computational method for solving QCD, to make predictions based on this theory. These predictions are then used to help interpret the results of experiments involving hadrons.

Could QDEL replace OLED? Yes, and it might happen sooner than expected

Keeping up with the Joneses…


The big elephant in the room here is Micro-LED. That’s because, like QDEL, Micro-LED pixels are self-emissive, with each pixel containing a tiny red, blue, and green LED, which combine to produce different colors as needed. It also means that Micro-LED displays have that pixel-level control for true blacks.

But QDEL could win here, too. Quantum dots seem to be able to produce more saturated and more pure colors than LEDs, which is why quantum dots are used on many high-end TVs today. Of course, it’s entirely possible that Micro-LED technology could be combined with a quantum dot layer for purer and more vibrant colors, which would create a stunning image with a high level of brightness.

Likely, however, QDEL could end up doing a similar job as Micro-LED for much cheaper. Micro-LED has proven expensive to produce. While QDEL isn’t being used on consumer screens just yet, it could end up being much cheaper given the fact that quantum dots at this point are relatively easy to manufacture.

30 Years After Warp Drives Were Proposed, we Still Can’t Make The Math Work

But other calculations say that applies only in limited cases and that if you ramp up the warp engine slowly enough, you’ll be fine.

Yet more calculations sidestep all of this and just look at how much negative energy you actually need to construct your warp drive. And the answer is, for a single macroscopic bubble — say, 30 feet (100 meters) across — you would need 10 times more negative energy than all of the positive energy contained in the entire universe, which isn’t very promising.

However, still other calculations show that this immense amount applies only to the traditional warp bubble as defined by Alcubierre. It might be possible to reshape the bubble so there’s a tiny “neck” in the front that’s doing the work of compressing space and then it balloons out to an envelope to contain the warp bubble. This minimizes any quantum weirdness so that you need only about a star’s worth of negative energy to shape the drive.

Online test-time adaptation for better generalization of interatomic potentials to out-of-distribution data

Molecular Dynamics (MD) simulation serves as a crucial technique across various disciplines including biology, chemistry, and material science1,2,3,4. MD simulations are typically based on interatomic potential functions that characterize the potential energy surface of the system, with atomic forces derived as the negative gradients of the potential energies. Subsequently, Newton’s laws of motion are applied to simulate the dynamic trajectories of the atoms. In ab initio MD simulations5, the energies and forces are accurately determined by solving the equations in quantum mechanics. However, the computational demands of ab initio MD limit its practicality in many scenarios. By learning from ab initio calculations, machine learning interatomic potentials (MLIPs) have been developed to achieve much more efficient MD simulations with ab initio-level accuracy6,7,8.

Despite their successes, the crucial challenge of implementing MLIPs is the distribution shift between training and test data. When using MLIPs for MD simulations, the data for inference are atomic structures that are continuously generated during simulations based on the predicted forces, and the training set should encompass a wide range of atomic structures to guarantee the accuracy of predictions. However, in fields such as phaseion9,10, catalysis11,12, and crystal growth13,14, the configurational space that needs to be explored is highly complex. This complexity makes it challenging to sample sufficient data for training and easy to make a potential that is not smooth enough to extrapolate to every relevant point. Consequently, a distribution shift between training and test datasets often occurs, which causes the degradation of test performance and leads to the emergence of unrealistic atomic structures, and finally the MD simulations collapse15.

It seems like something out of a science fiction movie — they successfully achieve the first quantum teleportation in history

The future is coming and much faster than we think. Let’s do an exercise of imagination, imagine, for a moment, being able to send information from one point to another without the need for cables, Wi-Fi or traditional signals, more or less like something telepathic, right? Well, that is precisely what scientists have recently achieved at the University of Oxford: teleporting data between two quantum computers. Although it may seem like science fiction or just news, the world.

Although, let’s lower the hype a little, the transmission distance of this experiment was less than two meters, but that doesn’t matter, what matters is having achieved this milestone of sharing information without the need for connections.

Quantum Breakthrough: Artificial Atoms Store and Control Light Like Never Before

Imagine being able to see quantum objects with your own eyes — no microscopes needed. That’s exactly what researchers at TU Wien and ISTA have achieved with superconducting circuits, artificial atoms that are massive by quantum standards.

Unlike natural atoms, these structures can be engineered to have customizable properties, allowing scientists to control energy levels and interactions in ways never before possible. By coupling them, they’ve developed a method to store and retrieve light, laying the groundwork for revolutionary quantum technologies. These engineered systems also enable precise quantum pulses and act as a kind of quantum memory, offering an unprecedented level of control over light at the quantum level.

Gigantic Quantum Objects – Visible to the Naked Eye.

/* */