Toggle light / dark theme

I found this on NewsBreak: Crucial connection for ‘quantum internet’ made for the first time.


However, this development is being held up because quantum information can be lost when transmitted over long distances. One way to overcome this barrier is to divide the network into smaller segments and link them all up with a shared quantum state.

To do this requires a means to store the quantum information and retrieve it again: that is, a quantum memory device. This must ‘talk’ to another device that allows the creation of quantum information in the first place.

For the first time, researchers have created such a system that interfaces these two key components and uses regular optical fibers to transmit the quantum data.

In a basement under the office at the University of Copenhagen, where Niels Bohr once conducted his research, the team toiled to demonstrate an innovative approach to storing quantum data – the quantum drum.

Made of ceramic, the small membrane of the drum has holes scattered around its edges in a neat pattern. When a laser light is incident on the membrane, it begins beating. The sonic vibrations of the drum can be stored and forwarded.

Through their previous work, the researchers know that the membrane stays in a fragile quantum state and can, therefore, receive and transmit data without losing it.

‘Three Nines’ Surpassed: Quantinuum Notches Milestones For Hardware Fidelity And Quantum Volume Formed in 2021, Quantinuum is the combination of the quantum hardware team from Honeywell Quantum Solutions (HQS) and the quantum software team at Cambridge Quantum Computing, HQS was founded in 2014.


Quantinuum has raised the bar for the global ecosystem by achieving the historic and much-vaunted “three 9’s” 2-qubit gate fidelity in its commercial quantum computer and announcing that its Quantum Volume has surpassed one million – exponentially higher than its nearest competitors.

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management

All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9’s” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.

“Interfacing two key devices together is a crucial step forward in allowing quantum networking, and we are really excited to be the first team to have been able to demonstrate this,” said Dr. Sarah Thomas.


How close are we to making quantum computing a reality? This is what a recent study published in Science Advances hopes to address as an international team of researchers discuss recent progress in how quantum information is both stored and then transmitted over long distances using a quantum memory device, which scientists have attempted to develop for some time. This study holds the potential to help scientists better understand the processes responsible for not only making quantum computing a reality, but also enabling it to work as seamlessly as possible.

While traditional telecommunications technology uses “repeaters” to prevent the loss of information over long distances, quantum computing cannot use such technology since it will destroy quantum information along the way. While quantum computing uses photons (particles of light) to send information, storing the information using a quantum memory device for further dissemination has eluded researchers for some time. Therefore, to combat the problem of sending quantum information over long distances, two devices are required: the first will send the quantum information while the second will store them for later dissemination.

It is the linking of these two devices that this recent study addresses, as the team of more than a dozen researchers successfully connected these two devices using optical fibers to send the data, which is being hailed as a first step in developing quantum systems. This breakthrough was accomplished with the collaboration of several European universities involving the creation of a quantum dot light source and integrating it with the quantum memory device.

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic vibrations, and then forward the data with new light sources when needed again. The results demonstrate that mechanical memory for quantum data could be the strategy that paves the way for an ultra-secure internet with incredible speeds.

Researchers from the National University of Singapore (NUS) have developed a new design concept for creating next-generation carbon-based quantum materials, in the form of a tiny magnetic nanographene with a unique butterfly-shape hosting highly correlated spins. This new design has the potential to accelerate the advancement of quantum materials which are pivotal for the development of sophisticated quantum computing technologies poised to revolutionize information processing and high density storage capabilities.