Toggle light / dark theme

Space-Time: The Biggest Problem in Physics

What is the deepest level of reality? In this Quanta explainer, Vijay Balasubramanian, a physicist at the University of Pennsylvania, takes us on a journey through space-time to investigate what it’s made of, why it’s failing us, and where physics can go next.

Explore black holes, holograms, “alien algebra,” and more space-time geometry: https://www.quantamagazine.org/the-un

00:00 — The Planck length, an intro to space-time.
1:23 — Descartes and Newton investigate space and time.
2:04 — Einstein’s special relativity.
2:32 — The geometry of space-time and the manifold.
3:16 — Einstein’s general relativity: space-time in four dimensions.
3:35 — The mathematical curvature of space-time.
4:57 — Einstein’s field equation.
6:04 — Singularities: where general relativity fails.
6:50 — Quantum mechanics (amplitudes, entanglement, Schrödinger equation)
8:32 — The problem of quantum gravity.
9:38 — Applying quantum mechanics to our manifold.
10:36 — Why particle accelerators can’t test quantum gravity.
11:28 — Is there something deeper than space-time?
11:45 — Hawking and Bekenstein discover black holes have entropy.
13:54 — The holographic principle.
14:49 — AdS/CFT duality.
16:06 — Space-time may emerge from entanglement.
17:44 — The path to quantum gravity.

——-
VISIT our website: https://www.quantamagazine.org.
LIKE us on Facebook: / quantanews.
FOLLOW us Twitter: / quantamagazine.

Quanta Magazine is an editorially independent publication supported by the Simons Foundation: https://www.simonsfoundation.org

Tachyons Explained: Faster-Than-Light Physics and the McGinty Equation

Tachyons, the hypothetical particles that travel faster than light, have long fascinated scientists and enthusiasts. In this video, we explore how the McGinty Equation (MEQ) serves as a groundbreaking tool in understanding these elusive particles. Delve into the world of quantum mechanics, fractal geometry, and gravity as we uncover the potential of tachyons to revolutionize science and technology. From their intriguing properties, such as imaginary mass and energy reduction at high speeds, to their implications for faster-than-light communication and interstellar exploration, this video is a journey into uncharted territories of physics.

We also discuss the quest to detect tachyons, innovative experimental methods, and the role of MEQ in guiding researchers. Could tachyons be the key to unlocking new dimensions, explaining dark matter and energy, or understanding the origins of the universe? Join us in this deep dive into the unknown and discover the potential future of tachyon research.

#Tachyons #McGintyEquation #QuantumMechanics #FractalGeometry #FasterThanLight #ImaginaryMass #QuantumPhysics #AdvancedPhysics #TachyonResearch #LightSpeedPhysics #QuantumFieldTheory #ScientificDiscovery #SpaceTime #InterstellarTravel #DarkMatter #DarkEnergy #FasterThanLightCommunication #PhysicsBreakthrough #CosmicMysteries #HypotheticalParticles

Exploring Zero Point Energy: Thermodynamics Demystified

Imagine a world where energy is limitless, clean, and ever-present—a world powered by Zero Point Energy (ZPE). In this video, we delve into the fascinating concept of ZPE, a quantum mechanics phenomenon that reveals the hidden energy within the quantum vacuum. Discover how the McGinty Equation offers a theoretical framework for understanding this incredible energy source while addressing the challenges of thermodynamics. From the intriguing interplay of quantum fluctuations and fractal geometry to the enduring laws of physics, this video explores the science, potential, and limitations of Zero Point Energy.

Join us as we navigate the quantum sea, examining how energy whispers through the fabric of space-time and why harnessing ZPE may be one of humanity’s most ambitious quests. Whether you’re intrigued by the mysteries of the universe, cutting-edge scientific theories, or the potential for revolutionary energy solutions, this video offers a compelling exploration of one of quantum physics’ most captivating topics.

#ZeroPointEnergy #QuantumMechanics #VacuumEnergy #McGintyEquation #CleanEnergy #FractalGeometry #SpaceTime #QuantumVacuum #EnergyFluctuations #Thermodynamics #PerpetualMotion #Entropy #QuantumFieldTheory #RenewableEnergy #InfiniteEnergy #PhysicsExplained #QuantumScience #FuturisticEnergy #EnergySolutions #QuantumPhysics

Temporal Mechanics Redefined: The Emergent Nature of Time and Its Implications for Reality

What if our understanding of time as a linear sequence of events is merely an illusion created by the brain’s processing of reality? Could time itself be an emergent phenomenon, arising from the complex interplay of quantum mechanics, relativity, and consciousness? How might the brain’s multidimensional computations, reflecting patterns found in the universe, reveal a deeper connection between mind and cosmos? Is it possible that advancements in our understanding of temporal mechanics could one day make time travel a practical reality rather than a theoretical concept? Could Quantum AI and Reversible Quantum Computing provide the tools to simulate, manipulate, and even reshape the flow of time, offering practical applications of D-Theory that bridge the gap between theoretical physics and transformative technologies? These profound questions lie at the heart of Temporal Mechanics: D-Theory as a Critical Upgrade to Our Understanding of the Nature of Time, my 2025 paper and book. D-Theory, also referred to as Quantum Temporal Mechanics, Digital Presentism, and D-Series, challenges conventional views of time as a fixed, universal backdrop to reality and instead redefines it as a dynamic interplay between the mind and the cosmos.

Quantum Annealing in the NISQ Era: Railway Conflict Management

We are in the noisy intermediate-scale quantum (NISQ) devices’ era, in which quantum hardware has become available for application in real-world problems. However, demonstrations of the usefulness of such NISQ devices are still rare. In this work, we consider a practical railway dispatching problem: delay and conflict management on single-track railway lines. We examine the train dispatching consequences of the arrival of an already delayed train to a given network segment. This problem is computationally hard and needs to be solved almost in real time. We introduce a quadratic unconstrained binary optimization (QUBO) model of this problem, which is compatible with the emerging quantum annealing technology. The model’s instances can be executed on present-day quantum annealers.

Scientists measure quantum geometry of electrons for the first time

The geometry or shape of a quantum system is mathematically expressed by a tool called the quantum geometric tensor (QGT). It also explains how a quantum system’s state changes when we tweak certain parameters such as magnetic field or temperature.

For the first time, researchers at MIT have successfully measured the QGT of electrons in solid materials. Scientists have been well aware of the methods to calculate the energy and motion of electrons, but understanding their quantum shape was only possible in theory until now.

5 Cybersecurity Priorities for The Trump Administration

2024: A year when AI, quantum computing, and cybersecurity converged to redefine our digital landscape. For those navigating these complex technological frontiers, clarity became the most critical currency.

Inside Cyber, Key moments that resonated with our community:

• Cybersecurity Trends for 2025 Diving deep into the evolving threat landscape and strategic priorities.

• AI, 5G, and Quantum: Innovation and Cybersecurity Risks Exploring the intersection of emerging technologies and security challenges https://lnkd.in/ex3ktwuF

• PCI DSS v4.0 Compliance Strategies Practical guidance for adapting to critical security standards https://lnkd.in/eK_mviZd.

Inside Cyber, Looking ahead to 2025, the convergence of AI, quantum computing, and cybersecurity will demand unprecedented collaboration, education, and strategic thinking. Our collective challenge is transforming potential vulnerabilities into opportunities for innovation and security.

Grateful to Georgetown University, our growing professional network, and the organizations committed to understanding and shaping our technological future.

Zero Point Energy Explained: Unlocking the Quantum Vacuum

The 21st century faces an unprecedented energy challenge that demands innovative solutions. This video explores Zero Point Energy (ZPE), a groundbreaking concept rooted in quantum mechanics that promises limitless, clean, and sustainable power. Learn how the quantum vacuum—long considered empty—is teeming with virtual particles and untapped energy potential. From understanding the Casimir effect to leveraging advanced technologies like fractal energy collectors and quantum batteries, this video details how ZPE could revolutionize industries, mitigate climate change, and empower underserved communities. Dive into the science, challenges, and global implications of a ZPE-powered future.

#ZeroPointEnergy #CleanEnergy #QuantumVacuum #Sustainability #EnergyInnovation #ZPE #QuantumMechanics #RenewableEnergy #GreenTech #CasimirEffect #QuantumEnergy #EnergySustainability #ClimateSolutions #FractalEnergy #QuantumBatteries #AdvancedTechnology #LimitlessEnergy #Nanotechnology #FutureOfEnergy #CleanPower