Toggle light / dark theme

Gravitational effects on the Higgs field within the Solar System

Abstract: The Higgs mechanism predicts, apart from the existence of a new scalar boson, the presence of a constant Higgs field that permeates all of space. The vacuum expectation value (VEV) of this field is affected by quantum corrections which are mainly generated by the self-interactions and couplings of the Higgs field to gauge bosons and heavy quarks. In this work we show that gravity can affect, in a non-trivial way, these quantum corrections through the finite parts of the one-loop contributions to the effective potential. In particular, we consider the corrections generated by the Standard Model Higgs self-interactions in slowly-varying weak gravitational backgrounds. The obtained results amount to the existence of non-negligible inhomogeneities in the Higgs VEV. Such inhomogeneities translate into spatial variations of the particle masses, and in particular of the proton-to-electron mass ratio. We find that these Higgs perturbations in our Solar System are controlled by the Eddington parameter, and are absent in pure General Relativity. Yet, they may be present in modified gravity theories. This predicted effect may be constrained by atomic clocks or high-resolution spectroscopic measurements, which could allow to improve current limits on modifications of Einstein’s gravity.

Scientists create quantum sensor that covers entire radio frequency spectrum

A quantum sensor could give Soldiers a way to detect communication signals over the entire radio frequency spectrum, from 0 to 100 GHz, said researchers from the Army.

Such wide spectral coverage by a single antenna is impossible with a traditional receiver system, and would require multiple systems of individual antennas, amplifiers and other components.

In 2018, Army scientists were the first in the world to create a quantum receiver that uses highly excited, super-sensitive atoms—known as Rydberg atoms—to detect communications signals, said David Meyer, a scientist at the U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. The researchers calculated the receiver’s channel capacity, or rate of data transmission, based on , and then achieved that performance experimentally in their lab—improving on other groups’ results by orders of magnitude, Meyer said.

Three national laboratories achieve record magnetic field for accelerator focusing magnet

In a multiyear effort involving three national laboratories from across the United States, researchers have successfully built and tested a powerful new magnet based on an advanced superconducting material. The eight-ton device—about as long as a semi-truck trailer—set a record for the highest field strength ever recorded for an accelerator focusing magnet and raises the standard for magnets operating in high-energy particle colliders.

The Department of Energy’s Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory designed, built and tested the new magnet, one of 16 they will provide for operation in the High-Luminosity Large Hadron Collider at CERN laboratory in Europe. The 16 magnets, along with another eight produced by CERN, serve as “optics” for charged particles: They will focus beams of protons into a tiny, infinitesimal spot as they approach collision inside two different particle detectors.

The ingredient that sets these U.S.-produced magnets apart is niobium-tin—a superconducting material that produces strong magnetic fields. These will be the first niobium-tin quadrupole magnets ever to operate in a particle accelerator.

Model simulator helps researchers map complex physics phenomena

To understand the behavior of quantum particles, imagine a pinball game—but rather than one metal ball, there are billions or more, all ricocheting off each other and their surroundings.

Physicists have long tried to study this interactive system of strongly correlated particles, which could help illuminate elusive phenomena like and magnetism.

One classic method is to create a simplified model that can capture the essence of these particle interactions. In 1963, physicists Martin Gutzwiller, Junjiro Kanamori and John Hubbard—working separately—proposed what came to be called the Hubbard model, which describes the essential physics of many interacting quantum particles. The solution to the model, however, only exists in one dimension. For decades, physicists have tried to realize the Hubbard model in two or three dimensions by creating that can mimic it.

US20160226597A1 — Neutrino Communication System

An advanced communications system comprising an emitter and an improved receiver (detector) utilizing modulated beams of neutrino and antineutrino waves as information carriers between the emitter and the receiver. of modulated neutrino and antineutrino beams in the emitter is achieved by a laser-like medium, while detection and demodulation of the neutrino and antineutrino beams is accomplished by a second laser-like medium which registers the flux (or of modulated neutrinos and antineutrinos passing there-through by means of resonant stimulated deexcitation of lasable excited states. In addition to the information transmission utilization, the neutrino emitter and receiver (detector) system may also be employed to gather information by the probing of internal earth structures. Such structures cause measurable refractions and retardations of the propagated pulses of monochromatic neutrino waves traveling through the earth between the emitter and receiver (detector), at certain predetermined neutrino

Russia’s Kilo-Class Submarines: “Black Holes” No Navy Wants to Fight

I think these can be fought with current technology such as quantum radar even other higher level technology. It can also be hacked with quantum radar or neutrino beams.


Know colloquially as the “Black Holes” by the U.S. Navy, the Improved-Kilo-class of submarines are quite deadly — and could turn the balance of power in the South China Sea in China’s favor.

/* */