Toggle light / dark theme

A research team has clarified the mechanism behind the generation of runaway electrons during the startup phase of a tokamak fusion reactor. The paper, “Binary Nature of Collisions Facilitates Runaway Electron Generation in Weakly Ionized Plasmas,” was published in the journal Physical Review Letters.

Nuclear energy refers to a power generation method that harnesses the energy of an artificial sun created on Earth, using resources extracted from seawater. To achieve this, technology capable of confining high-temperature plasma exceeding 100 million degrees for extended periods in a fusion is essential.

A tokamak is an artificial sun system in the shape of a torus, with no beginning or end, where magnetic fields are applied to confine particles.

Scientists at the University of California, Irvine have uncovered the atomic-scale mechanics that enhance superconductivity in an iron-based material, a finding published recently in Nature.

Using advanced spectroscopy instruments housed in the UC Irvine Materials Research Institute, the researchers were able to image atom vibrations and thereby observe new phonons—quasiparticles that carry thermal energy—at the interface of an iron selenide (FeSe) ultrathin film layered on a (STO) substrate.

“Primarily emerging from the out-of-plane vibrations of oxygen atoms at the interface and in apical oxygens in STO, these phonons couple with electrons due to the spatial overlap of electron and phonon wave functions at the interface,” said lead author Xiaoqing Pan, UC Irvine Distinguished Professor of materials science and engineering, Henry Samueli Endowed Chair in Engineering and IMRI director.

A method that can grow a useful insulating material into exceptionally high-quality films that are just one atom thick and are suitable for industrial-scale production has been developed by an international team led by Xixiang Zhang from KAUST.

The work is published in the journal Nature Communications.

The material, called (hBN), is used in and can also enhance the performance of other two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs).

In a significant advancement in the field of anti-counterfeiting technology, Professor Jiseok Lee and his research team in the School of Energy and Chemical Engineering at UNIST have developed a new hidden anti-counterfeiting technology, harnessing the unique properties of silver nanoparticles (AgNPs). The results are published in Advanced Materials.

“The technology we have developed holds significant promise in preventing the counterfeiting of valuable artworks and defense materials, particularly in scenarios where authenticity must be verified against potential piracy,” Professor Lee explained.

The team leveraged the inherent disadvantage of AgNPs, which tend to discolor upon exposure to UV light, to create a controlled color development process. By trapping silver nanoparticles within a , researchers can manipulate and, consequently, the color emitted under UV light. Larger polymer nets yield silver nanoparticles that appear yellow, while smaller nets produce a red hue, allowing for precise control of the resultant colors based on ingredient combinations.

Physicists soon will be closer than ever to answering fundamental questions about the origins of the universe by learning more about its tiniest particles.

University of Cincinnati Professor Alexandre Sousa in a new paper outlined the next 10 years of global research into the behavior of neutrinos, particles so tiny that they pass through virtually everything by the trillions every second at nearly the speed of light.

Neutrinos are the most abundant particles with mass in the universe, so scientists want to know more about them.

The quarks that make up the nuclei of all atoms around us are known to “mix”: the different types of quark occasionally change into one another. The amounts in which these processes happen are not very well known, though—and the theoretical values don’t even add up to 100%. UvA-IoP physicist Jordy de Vries and colleagues from Los Alamos, Seattle, and Bern have now published work that takes a step towards solving these mysteries.

All good things come in threes. The Standard Model of particle physics takes this motto to heart: it contains three so-called generations of elementary particles. Take the quarks as an example. In addition to the pair of quark types known as “up” and “down,” which make up the core of atomic nuclei, there exist two additional quark pairs: “charm” and “strange,” as well as “top” and “bottom.” Together, these six types of quarks are known as the six quark flavors.

The Standard Model predicts that one quark flavor can transmute into another, a phenomenon called quark mixing, but the model does not predict how often different transmutations happen. In fact, the current state-of-the-art analysis indicates that something is afoot: the probabilities of all mixings do not add up to 100%. What is going on? Could this be a signal of new physics outside of the Standard Model?

French physicist Louis de Broglie’s pilot wave theory proposed that quantum particles are directed by a guiding wave. Although de Broglie later renounced his theory due to its complexity and abstractness, the concept was revived by David Bohm and remains a topic of ongoing scientific exploration and debate.

Celebrating a Century of Quantum Discovery

Last week marked the 100-year anniversary of French physicist Louis de Broglie presenting his doctoral thesis, a groundbreaking work that earned him a Nobel prize for “his discovery of the wave nature of electrons.” His discovery became a cornerstone of quantum mechanics and gave rise to his renowned “pilot wave” theory—an alternative framework for understanding the quantum world. Yet, despite its significance, de Broglie later rejected his own theory. Why did he abandon it?

Year 2006 face_with_colon_three


One of the good things about being God is that there’s not much competition. From time immemorial, no one else has boasted the skills necessary to create a universe. Now that’s about to change. “People are becoming more powerful,” says Andrei Linde, a cosmologist based at Stanford University in California. “Maybe it’s time we redefine God as something more sophisticated than just the creator of the universe.”

Linde was prompted to make this wry observation by the news that a glittering prize is within physicists’ reach. For decades, particle accelerators have been racking up an impressive list of achievements, including creating antimatter and exotic particles never seen in nature. The next generation of these giant colliders will provide the hunting ground for the elusive Higgs boson, thought to be the source of all mass. These machines might even create mini black holes. Mighty as those discoveries and creations are, however, they pale into insignificance beside what Nobuyuki Sakai and his colleagues at Yamagata University in Japan have now put on the table. They have discovered how to use a particle accelerator to create a whole new universe.

Each quantum computing trajectory faces unique developmental needs. Gate-based quantum computers require scalability, error correction and quantum gate fidelity improvements to achieve stable, accurate computations. The whole-systems approach needs advances in qubit connectivity and reductions in noise interference to boost computational reliability. Meanwhile, parsing-of-totality depends on advancing sensing techniques to harness atoms’ deeper patterns and potentiality.

Major investments are currently directed toward gate-based quantum computing, with IBM, Google and Microsoft leading the charge, aiming for universal quantum computation. However, the idea of universal quantum computation remains complex given that the parsing-of-totality approach suggests the possibility of new quantum patterns, properties and even principles that could require a conceptual shift as radical as the transition from classical bits to quantum qubits.

All three trajectories will play essential roles in the future of quantum computing. Gate-based systems may ultimately achieve universal applicability. Whole-systems quantum computing will continue to reframe a larger class of problems as complex adaptive systems requiring optimization to be solved. The parsing-based approaches will leverage novel quantum principles to spawn new quantum technologies.