Menu

Blog

Archive for the ‘particle physics’ category: Page 254

Dec 21, 2021

Meet the worm with a jaw of metal

Posted by in categories: biological, particle physics

So the bristle worm jaw is both metal-like and yet not. As Zelaya-Lainez puts it, “Here we are dealing with a completely different material, but interestingly, the metal atoms still provide strength and deformability there, just like in a piece of metal.”

Observing the creation of a metal-like material from biological processes is a bit of a surprise and may suggest new approaches to materials development. “Biology could serve as inspiration here,” says Hellmich, “for completely new kinds of materials. Perhaps it is even possible to produce high-performance materials in a biological way — much more efficiently and environmentally friendly than we manage today.”

Dec 21, 2021

Weird quantum objects known as Q balls could explain why we exist

Posted by in categories: cosmology, particle physics, quantum physics

Theoretical “lumps” called Q balls formed in the moments after the Big Bang.


One of the biggest cosmological mysteries is why the universe is made up of way more matter than antimatter, essentially why we exist. Now, a team of theoretical physicists says they know how to find the answer. All they need to do is detect the gravitational waves produced by bizarre quantum objects called Q balls.

Every kind of ordinary matter particle has an antimatter partner with opposing characteristics — and when matter interacts with antimatter, the two annihilate each other. That fact makes our existence a mystery, as cosmologists are pretty sure that at the dawn of the universe, equal amounts of matter and antimatter were produced; those matter and antimatter partners should have all annihilated each other, leaving the universe devoid of any matter at all. Yet matter exists, and researchers are slowly uncovering the reasons why.

Dec 18, 2021

The Universe Might Be a Self-Learning Computer. Here’s What That Means

Posted by in categories: computing, particle physics, space

Albert Einstein and Stephen Hawking – the most famous physicists of the twentieth century — both spent decades trying to find a single law that could explain how the world works on the scale of the atom and on the scale of galaxies. In short, the Standard Model describes the physics of the very small. General relativity describes the physics of the very large. The problem? The two theories tell different stories about the fundamental nature of reality. Einstein described the problem nearly a century ago in his 1923 Nobel lecture 0, telling the audience that a physicist who searches for, “an integrated theory cannot rest content with the assumption that there exist two distinct fields totally independent of each other by their nature.” Even while on his deathbed, Einstein worked on a way to unite all the laws of physics under one unifying theory.

Dec 18, 2021

Maybe ‘boson clouds’ could explain dark matter

Posted by in categories: cosmology, particle physics, quantum physics

The nature of dark matter continues to perplex astronomers. As the search for dark matter particles continues to turn up nothing, it’s tempting to throw out the dark matter model altogether, but indirect evidence for the stuff continues to be strong. So what is it? One team has an idea, and they’ve published the results of their first search.

The conditions of dark matter mean that it can’t be regular matter. Regular matter (atoms, molecules, and the like) easily absorbs and emits light. Even if dark matter were of molecules so cold they emitted almost no light, they would still be visible by the light they absorb. They would appear like dark nebulae commonly seen near the galactic plane. But there aren’t nearly enough of them to account for the effects of dark matter we observe. We’ve also ruled out neutrinos. They don’t interact strongly with light, but neutrinos are a form of “hot” dark matter since neutrinos move at nearly the speed of light. We know that most dark matter must be sluggish, and therefore “cold.” So if dark matter is out there, it must be something else.

In this latest work, the authors argue that dark matter could be made of particles known as scalar bosons. All known matter can be placed in two large categories known as fermions and bosons. Which category a particle is in depends on a quantum property known as spin. Fermions such as electrons and quarks have fractional spin such as 1/2 or 3/2. Bosons such as photons have an integer spin such as 1 or 0. Any particle with a spin of 0 is a scalar boson.

Dec 18, 2021

Breakthrough AI Technique Enables Real-Time Rendering of Scenes in 3D From 2D Images

Posted by in categories: particle physics, robotics/AI, space

The new machine-learning system can generate a 3D scene from an image about 15,000 times faster than other methods. Humans are pretty good at looking at a single two-dimensional image and understanding the full three-dimensional scene that it captures. Artificial intelligence agents are not.


The hunt is on for leptoquarks, particles beyond the limits of the standard model of particle physics —the best description we have so far of the physics that governs the forces of the Universe and its particles. These hypothetical particles could prove useful in explaining experimental and theoretical anomalies observed at particle accelerators such as the Large Hadron Collider (LHC) and could help to unify theories of physics beyond the standard model, if researchers could just spot them.

Dec 17, 2021

The science events to watch for in 2022

Posted by in categories: particle physics, science, space

Omicron, Moon missions and particle physics are among the themes set to shape research in the coming year.

Dec 17, 2021

Honda Research Institute Synthesizes Nanomaterials — A Breakthrough For Quantum Electronics?

Posted by in categories: nanotechnology, particle physics, quantum physics

Honda Research Institute USA (HRI-US) is doing some pretty interesting things in the field of quantum electronics. Scientists from HRI-US were able to successfully synthesize atomically thin nanoribbons. HRI noted that these are materials with atomic-scale thickness and a ribbon shape. These nanoribbons have broad implications for the future of quantum electronics, which is an area of physics that focuses on the effects of quantum mechanics on the behavior of electrons in matter.

According to the press release, “HRI-US’s synthesis of an ultra-narrow two-dimensional material built of a single or double layer of atoms demonstrated the ability to control the width of these two-dimensional materials to sub-10 nanometer (10-9 meter) that results in quantum transport behavior at much higher temperatures compared to those grown using current methods.”

The scientists along with collaborations from both Columbia University and Rice University as well as Oak Ridge National Laboratory co-authored a new paper on this topic and published it in Science Advances.

Dec 16, 2021

NASA Enters the Solar Atmosphere for the First Time

Posted by in categories: particle physics, space

For the first time in history, a spacecraft has touched the Sun. NASA’s Parker Solar Probe has now flown through the Sun’s upper atmosphere – the corona – and sampled particles and magnetic fields there.

Dec 16, 2021

Reconstruction of Bloch wavefunctions of holes in a semiconductor

Posted by in categories: engineering, particle physics, quantum physics

Abstract: A central goal of condensed-matter physics is to understand how the diverse electronic and optical properties of crystalline materials emerge from the wavelike motion of electrons through periodically arranged atoms. However, more than 90 years after Bloch derived the functional forms of electronic waves in crystals [1] (now known as Bloch wavefunctions), rapid scattering processes have so far prevented their direct experimental reconstruction. In high-order sideband generation [2–9], electrons and holes generated in semiconductors by a near-infrared laser are accelerated to a high kinetic energy by a strong terahertz field, and recollide to emit near-infrared sidebands before they are scattered. Here we reconstruct the Bloch wavefunctions of two types of hole in gallium arsenide at wavelengths much longer than the spacing between atoms by experimentally measuring sideband polarizations and introducing an elegant theory that ties those polarizations to quantum interference between different recollision pathways. These Bloch wavefunctions are compactly visualized on the surface of a sphere. High-order sideband generation can, in principle, be observed from any direct-gap semiconductor or insulator. We thus expect that the method introduced here can be used to reconstruct low-energy Bloch wavefunctions in many of these materials, enabling important insights into the origin and engineering of the electronic and optical properties of condensed matter.

From: Joseph Costello [view email].

Dec 15, 2021

Graphene: The Wonder Material of the Future

Posted by in categories: business, particle physics, sustainability

There is a new wonder material in town, and its name is graphene. Since it was first successfully isolated in 2004, graphene, with its honeycomb-like 2D structure and its wide gamut of interesting properties, has been keenly studied by material scientists.

This naturally transparent 1 millimeter thick lattice of carbon atoms has multiple applications and could even one day potentially solve the world’s water crisis.

The faith in the material is so strong that, according to numbers projected by Fortune Business Insights, its market value will be $2.8 billion in 2027.