Toggle light / dark theme

Imagine you’re sitting across from a friend, having a conversation.


I’m a die-hard Beach Boys fan. In one of their most famous songs, they sing about “pickin’ up good vibrations” from a girl. We’ve all felt those “good vibes” when we’re connecting with someone new. I used to think that feeling was a mysterious, mystical experience — something I couldn’t fully explain that bonded me with some friends and strangers more easily than others.

It turns out that “good vibes” aren’t as mysterious as I thought.

Pioneering neuroscientists have begun investigating how the brain works when we are interact ing with others — a technique they call hyperscanning. Neuroscientists have been using existing scanning methods, like MRI and EEG, to monitor the brain activity of two or more people as they do something together: for example, performing music, learning a poem, or having a conversation.

Learning and a spectrum of other behavioral competencies allow organisms to rapidly adapt to dynamically changing environmental variations. The emerging field of diverse intelligence seeks to understand what systems, besides ones with complex brains, exhibit these capacities. Here, we tested predictions of a general computational framework based on the free energy principle in neuroscience but applied to aneural biological process as established previously, by demonstrating and manipulating pattern recognition in a simple aneural organism, the green algae Volvox. Our studies of the adaptive photoresponse in Volvox reveal that aneural organisms can distinguish between patterned and randomized inputs and indicate how this is achieved mechanistically.

Break it down: How AI can learn from the brain.

In a recent paper titled “A sensory-motor theory of the neocortex” published in the journal Nature Neuroscience, Rao posited that the brain uses active predictive coding (APC) to understand the world and break down complicated problems into simpler…


When you reach out to pet a dog, you expect it to feel soft. If it doesn’t feel like how you expect, your brain uses that feedback to inform your next action — maybe you pull your hand away. Previous models of how the brain works have typically separated perception and action. For Allen School professor Rajesh Rao, those two processes are closely intertwined, and their relationship can be mapped using a computational algorithm.

“This flips the traditional paradigm of perception occurring before action,” said Rao, the Cherng Jia and Elizabeth Yun Hwang Professor in the Allen School and University of Washington Department of Electrical & Computer Engineering and co-director of the Center for Neurotechnology.

Pain is a complex, multifaceted experience shaped by various factors beyond physical sensation, such as a person’s mindset and their expectations of pain. The placebo effect, the tendency for a person’s symptoms to improve in response to inactive treatment, is a well-known example of how expectations can significantly alter a person’s experience. Mindfulness meditation, which has been used for pain management in various cultures for centuries, has long been thought to work by activating the placebo response. However, scientists have now shown that this is not the case.

A new study, published in Biological Psychiatry, has revealed that mindfulness meditation engages distinct brain mechanisms to reduce pain compared to those of the . The study, conducted by researchers at University of California San Diego School of Medicine, used advanced brain imaging techniques to compare the pain-reducing effects of mindfulness meditation, a placebo cream and a “sham” mindfulness meditation in healthy participants.

The study found that mindfulness meditation produced significant reductions in pain intensity and pain unpleasantness ratings, and also reduced brain activity patterns associated with pain and negative emotions. In contrast, the placebo cream only reduced the brain activity pattern associated with the , without affecting the person’s underlying experience of pain.

Researchers have discovered that DNA methylation is crucial for reprogramming astrocytes into stem cells in the adult mouse brain, especially after ischemic injury, with potential implications for regenerative medicine.

Wear your support for the show with a Closer To Truth hoodie, T-shirt, or tank: https://bit.ly/3P2ogje.

What is it about human brains that enable both the regulation of bodily activities and the generation of mental thoughts? What are the mechanisms of human brain function? How do they integrate to give the sense of mental unity? What happens when something in the brain goes wrong—abnormalities, injury, disease? What is the future of brain science?

Dr. Kelsey Martin is Dean of the David Geffen School of Medicine at UCLA as well as a professor of biological chemistry, psychiatry and biobehavioral sciences. Her research focuses on the cell biology of transcription-dependent forms of synaptic plasticity, particularly those underlying learning and memory.

Donate to Closer To Truth and help us keep our content free and without paywalls: https://shorturl.at/OnyRq.

Their…


A multi-university research team co-led by University of Virginia engineering professor Gustavo K. Rohde has developed a system that can spot genetic markers of autism in brain images with 89 to 95% accuracy.

Their findings suggest doctors may one day see, classify and treat autism and related neurological conditions with this method, without having to rely on, or wait for, behavioral cues. And that means this truly personalized medicine could result in earlier interventions.