Toggle light / dark theme

Scientists make ‘life-changing’ discovery over protein linked with Parkinson’s

Scientists have made a potentially “life-changing” discovery that could pave the way for new drugs to treat Parkinson’s disease.

Experts have known for several decades that the PINK1 protein is directly linked to Parkinson’s disease – the fastest growing neurodegenerative condition in the world.

Until now, no one has seen what human PINK1 looks like, how PINK1 attaches to the surface of damaged mitochondria inside of cells, or how it is activated.

A premotor cortical network in the brain allows people to voluntarily stop speaking, study suggests

Speech is a unique human ability that is known to be supported by various motor and cognitive processes. When humans start speaking, they can decide to cease at any point; for instance, if they are interrupted by something happening or by another person speaking to them.

The ability to voluntarily stop speaking plays a central role in social interactions, as it allows people to engage in conversations with others while adaptively responding to social cues, environmental stimuli or interruptions. While many past studies explored the neural and cognitive underpinnings of itself, the brain processes associated with speech inhibition remain poorly understood.

Researchers at the University of California San Francisco recently set out to better understand how the controls the ceasing of speech using tools to record neurophysiological signals. Their paper, published in Nature Human Behaviour, unveils a previously unknown premotor cortical network that could support voluntary speech inhibition.

Direct translation of brain imaging to text with MindLLM

Yale University, Dartmouth College, and the University of Cambridge researchers have developed MindLLM, a subject-agnostic model for decoding functional magnetic resonance imaging (fMRI) signals into text.

Integrating a neuroscience-informed attention mechanism with a large language model (LLM), the model outperforms existing approaches with a 12.0% improvement in downstream tasks, a 16.4% increase in unseen subject generalization, and a 25.0% boost in novel task adaptation compared to prior models like UMBRAE, BrainChat, and UniBrain.

Decoding into has significant implications for neuroscience and brain-computer interface applications. Previous attempts have faced challenges in predictive performance, limited task variety, and poor generalization across subjects. Existing approaches often require subject-specific parameters, limiting their ability to generalize across individuals.

A replay of life: What happens in our brain when we die?

Scientists have recorded the first-ever brain scan of a dying human.

A man suddenly died during a routine brain scan, revealing intriguing insights into what happens in our final moments.

An 87-year-old man undergoing a routine EEG for epilepsy suffered a fatal heart attack. Researchers found that in the 30 seconds before and after his heart stopped, his brain waves resembled those seen during dreaming, memory recall, and meditation.

This suggests that the commonly reported phenomenon of “life flashing before your eyes” may have a neurological basis. However, since this is a single case study, more research is needed to confirm how common this experience may be.

The findings, published by Dr. Ajmal Zemmar and his team, showed a surge in gamma waves — high-frequency neural oscillations linked to memory and consciousness — just before and after death.

These waves are typically observed when people recall memories, adding weight to the idea that the brain may replay key life events in its final moments. While this discovery cannot fully explain the mysteries of death, it offers a fascinating glimpse into the brain’s last activity and opens the door for further research on human consciousness at the end of life.


The hard problem of consciousness-A perspective from holistic philosophy

Based on a material view and reductionism, science has achieved great success. These cognitive paradigms treat the external as an objective existence and ignore internal consciousness. However, this cognitive paradigm, which we take for granted, has also led to some dilemmas related to consciousness in biology and physics. Together, these phenomena reveal the interaction and inseparable side of matter and consciousness (or body and mind) rather than the absolute opposition. However, a material view that describes matter and consciousness in opposition cannot explain the underlying principle, which causes a gap in interpretation. For example, consciousness is believed to be the key to influencing wave function collapse (reality), but there is a lack of a scientific model to study how this happens. In this study, we reveal that the theory of scientific cognition exhibits a paradigm shift in terms of perception. This tendency implies that reconciling the relationship between matter and consciousness requires an abstract theoretical model that is not based on physical forms. We propose that the holistic cognitive paradigm offers a potential solution to reconcile the dilemmas and can be scientifically proven. In contrast to the material view, the holistic cognitive paradigm is based on the objective contradictory nature of perception rather than the external physical characteristics. This cognitive paradigm relies on perception and experience (not observation) and summarizes all existence into two abstract contradictory perceptual states (Yin-Yang). Matter and consciousness can be seen as two different states of perception, unified in perception rather than in opposition. This abstract perspective offers a distinction from the material view, which is also the key to falsification, and the occurrence of an event is inseparable from the irrational state of the observer’s conscious perception. Alternatively, from the material view, the event is random and has nothing to do with perception. We hope that this study can provide some new enlightenment for the scientific coordination of the opposing relationship between matter and consciousness.

Keywords: contradiction; free energy principle; hard problem of consciousness; holistic philosophy; perception; quantum mechanics; reductionism.

Copyright © 2022 Chen and Chen.

Global mental health crisis hits workplaces

It added that the average annual cost of poor mental health per employee in finance and insurance was £5,379, more than double that in any of the 14 other sectors covered.

The report adds to a growing volume of research on the impact of a global mental health crisis on companies and the workplace.

According to the World Health Organization and the International Labour Organization, about 12bn working days are lost every year to depression and anxiety, costing the global economy $1tn annually.

CRISP Award Funds Study on Immunotherapy’s Impact on Cognitive Function

Immunotherapy boosts a person’s own immune system to identify and fight cancer cells that normally evade its defenses.

However, like traditional cancer treatments, immunotherapy may cause or exacerbate cognitive decline, especially in older adults. Because this treatment is much newer than chemotherapy or radiation, these potential side effects have not yet been widely studied.

Gee Su Yang, assistant professor at the UConn School of Nursing, has received a $60,000 CRISP (Clinical Research Innovation Seed Program) Award from the Office of the Vice President for Research to conduct a pilot study of how immunotherapy impacts cognitive function in older cancer patients.

RNA polymerase II at histone genes predicts outcome in human cancer

Histone proteins provide essential structural support for DNA in chromosomes, acting as spools around which DNA strands wrap. These proteins have been well studied, but most current tools to study gene expression rely on RNA sequencing. Histone RNA is unique in that its structure prevents the RNA molecules from being detected by current methods.

Thus, the expression of histone genes may be significantly underestimated in tumor samples. The researchers hypothesized that the increased proliferation of cancer cells leads to a very elevated expression, or hypertranscription, of histones to meet the added demands of cell replication and division.

To test their hypothesis, the researchers used CUTAC profiling to examine and map RNAPII, which transcribes DNA into precursors of messenger RNA. They studied 36 FFPE samples from patients with meningioma – a common and benign brain tumor – and used a novel computational approach to integrate this data with nearly 1,300 publicly available clinical data samples and corresponding clinical outcomes.

In tumor samples, the RNAPII enzyme signals found on histone genes were reliably able to distinguish between cancer and normal samples.

RNAPII signals on histone genes also correlated with clinical grades in meningiomas, accurately predicting rapid recurrence as well as the tendency of whole-arm chromosome losses. Using this technology on breast tumor FFPE samples from 13 patients with invasive breast cancer also predicted cancer aggressiveness.


Using a new technology and computational method, researchers have uncovered a biomarker capable of accurately predicting outcomes in meningioma brain tumors and breast cancers.

New lipid nanoparticle platform delivers mRNA to the brain through the blood-brain barrier

Getting mRNA into the brain could allow scientists to instruct brain cells to produce therapeutic proteins that can help treat or prevent disease by replacing missing proteins, reducing harmful ones, or activating the body’s defenses.

The research team designed and tested a library of lipids to optimize their ability to cross the blood-brain barrier. Through a series of structural and functional analyses, they identified a lead formulation, termed MK16 BLNP, that exhibited significantly higher mRNA delivery efficiency than existing lipid nanoparticles approved by the Food and Drug Administration (FDA). This system takes advantage of natural transport mechanisms within the blood-brain barrier, including caveolae-and γ-secretase-mediated transcytosis, to move nanoparticles across the barrier, say the investigators.

In studies using mouse models of disease, the BLNP platform successfully delivered therapeutic mRNAs to the brain, demonstrating its potential for clinical application.


Scientists have developed a lipid nanoparticle system capable of delivering messenger RNA (mRNA) to the brain via intravenous injection, a challenge that has long been limited by the protective nature of the blood-brain barrier.

The findings, in mouse models and isolated human brain tissue, were published in Nature Materials. They demonstrate the potential of this technology to pave the way for future treatments for a wide range of conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction.

The blood-brain barrier serves as a protective shield, preventing many substances—including potentially beneficial therapies—from reaching the brain. While previous research introduced a platform for transporting large biomolecules such as proteins and oligonucleotides into the central nervous system, this new study focuses on a different approach: using specially designed lipid nanoparticles to transport mRNA across the barrier.