Toggle light / dark theme

Scientists are debating whether concepts such as memory, consciousness, and communication can be applied beyond the animal kingdom, Zoë Schlanger wrote in our June 2024 issue.

“Consciousness was once seen as belonging solely to humans and a short list of nonhuman animals that clearly act with intention,” Schlanger wrote in an article adapted from her book, “The Light Eaters: How the Unseen World of Plant Intelligence Offers a New Understanding of Life on Earth.”

“Yet seemingly everywhere researchers look, they are finding that there is more to the inner lives of animals than we ever thought possible. Scientists now talk regularly about animal cognition; they study the behaviors of individual animals, and occasionally ascribe personalities to them. Some scientists now posit that plants should likewise be considered intelligent.”

“Not so long ago, treading even lightly in this domain could upend a scientist’s career,” Schlanger continued. The popular 1973 book “The Secret Life of Plants” included real science, but also featured wildly unscientific projection; many scientists were unable to reproduce its claims, Schlanger wrote, causing a decades-long avoidance of plant-behavior studies.

A decade later, a paper by David Rhoades, a zoologist and chemist at the University of Washington, proposed that trees were communicating with one another to defend against a caterpillar infestation. Rhoades was ridiculed by peers; his discovery ended up buried, even as it opened new lines of inquiry. “Four decades on, the idea that plants might communicate intentionally with one another remains a controversial concept in botany,” Schlanger wrote. Definitions of communication are slippery; intentionality is even harder to show.

The essential question of plant intelligence is “How does something without a brain coordinate a response to stimuli?” Schlanger continued. “How does information about the world get translated into action that benefits the plant? How can the plant sense its world without a centralized place to parse that information?” To learn more, she spoke with scientists studying plant agency, memory, and other avenues of research.

A new study shows that intelligence is best predicted by global brain connectivity, not just specific regions, indicating a more holistic neural basis for cognition. They examined fluid, crystallized, and general intelligence using fMRI data, finding that general intelligence had the strongest predictive power.

The human brain is the central organ that controls our body. It processes sensory information and enables us to think, make decisions, and store knowledge. Despite its remarkable capabilities, it is paradoxical how much remains unknown about this intricate organ.

Jonas Thiele and Dr. Kirsten Hilger, who leads the “Networks of Behavior and Cognition” research group at the Department of Psychology I at Julius-Maximilians-Universität Würzburg (JMU), are dedicated to unraveling the mysteries of the brain. Their latest research has been published in the scientific journal PNAS Nexus.

Microgravity is known to affect muscles, bones, the immune system, and cognition, but its specific effects on the brain remain largely unexplored. To investigate this, scientists from Scripps Research partnered with the New York Stem Cell Foundation to send tiny clusters of brain cells, known as “organoids,” to the International Space Station (ISS). These organoids were derived from stem cells and designed to mimic certain aspects of brain development.

Remarkably, the organoids returned from their month-long stay in orbit still healthy. However, they exhibited accelerated maturation compared to identical organoids grown on Earth. The space-exposed cells progressed closer to becoming fully developed neurons and showed early signs of specialization. These findings, recently published in Stem Cells Translational Medicine, offer new insights into how space travel might influence neurological development and brain function.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, PhD, professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”

For this experiment, the researchers analyzed data from 172 individuals, including 96 with schizophrenia spectrum disorders and 76 healthy controls. Participants underwent resting-state fMRI scans, which measure spontaneous brain activity, and completed standardized neuropsychological assessments. These assessments evaluated various cognitive abilities, such as working memory, attention, and processing speed. The researchers specifically examined the connectivity between the mediodorsal thalamus and dorsolateral prefrontal cortex and analyzed how these patterns correlated with participants’ cognitive performance.

The results confirmed the findings of Experiment 1. Weaker connectivity between the mediodorsal thalamus and dorsolateral prefrontal cortex was associated with poorer performance on tasks requiring executive function, particularly in individuals with schizophrenia.

Importantly, the researchers observed that this neural connectivity was specifically predictive of working memory performance when the task involved conflicting information. This correlation was not observed in tasks without conflict, suggesting that the mediodorsal thalamus–dorsolateral prefrontal cortex network plays a critical role in managing cognitive interference. These findings reinforced the potential of this neural connectivity as a biomarker for executive dysfunction in schizophrenia.

Have you ever wondered how fast our brains work? Well, scientists have recently quantified the brain’s speed limit. They revealed that from sensory organs, the brain processes signals at only about 10 bits per second.

This speed is millions of times slower than the input rate, as the human body’s sensory systems gather data about the surrounding environment at a rate of a billion bits per second.

The secret to cellular youth may lie in maintaining a small nucleolus—a dense structure within the cell nucleus—according to investigators at Weill Cornell Medicine. These findings were uncovered in yeast, a model organism renowned for its role in making bread and beer, yet surprisingly similar to humans at the cellular level.

The study, published Nov. 25 in Nature Aging, may lead to new longevity treatments that could extend human lifespan. It also establishes a mortality timer that reveals how long a cell has left before it dies.

As people get older, they are more likely to develop health conditions, such as cancer, cardiovascular disease and neurodegenerative diseases.

Sir Roger Penrose, a name synonymous with genius, has tirelessly pursued the secrets of the universe with the fervour of a true renaissance seer. His intellectual contributions span a breathtaking range, from the intricate beauty of Penrose tilings to the vast expanse of cosmology, and even the enigmatic depths of human consciousness.

Surprisingly, the organoids were still healthy when they returned from orbit a month later, but the cells had matured faster compared to identical organoids grown on Earth—they were closer to becoming adult neurons and were beginning to show signs of specialization. The results, which could shed light on potential neurological effects of space travel, were published on October 23, 2024, in Stem Cells Translational Medicine.

“The fact that these cells survived in space was a big surprise,” says co-senior author Jeanne Loring, PhD, professor emeritus in the Department of Molecular Medicine and founding director of the Center for Regenerative Medicine at Scripps Research. “This lays the groundwork for future experiments in space, in which we can include other parts of the brain that are affected by neurodegenerative disease.”

On Earth, the team used stem cells to create organoids consisting of either cortical or dopaminergic neurons, which are the neuronal populations impacted in multiple sclerosis and Parkinson’s disease—diseases that Loring has studied for decades. Some organoids also included microglia, a type of immune cell that is resident within the brain, to examine the impact of microgravity on inflammation.


Abstract. Research conducted on the International Space Station (ISS) in low-Earth orbit (LEO) has shown the effects of microgravity on multiple organs. To investigate the effects of microgravity on the central nervous system, we developed a unique organoid strategy for modeling specific regions of the brain that are affected by neurodegenerative diseases. We generated 3-dimensional human neural organoids from induced pluripotent stem cells (iPSCs) derived from individuals affected by primary progressive multiple sclerosis (PPMS) or Parkinson’s disease (PD) and non-symptomatic controls, by differentiating them toward cortical and dopaminergic fates, respectively, and combined them with isogenic microglia. The organoids were cultured for a month using a novel sealed cryovial culture method on the International Space Station (ISS) and a parallel set that remained on Earth. Live samples were returned to Earth for analysis by RNA expression and histology and were attached to culture dishes to enable neurite outgrowth. Our results show that both cortical and dopaminergic organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes, suggesting that the cells matured more quickly in LEO. This study is continuing with several more missions in order to understand the mechanisms underlying accelerated maturation and to investigate other neurological diseases. Our goal is to make use of the opportunity to study neural cells in LEO to better understand and treat neurodegenerative disease on Earth and to help ameliorate potentially adverse neurological effects of space travel.

Researchers at the Icahn School of Medicine at Mount Sinai have been awarded a $21 million grant from the National Institute on Aging (NIA) of the National Institutes of Health (NIH), to further advance understanding of an aging-related hormone known as follicle-stimulating hormone (FSH), including its potential role in obesity, osteoporosis, and Alzheimer’s disease. The work could lead to the development of new treatments for these and other conditions involving aging.

This is a collaborative effort with the NIA, led by Mone Zaidi, MD, PhD, Director of the Center for Translational Medicine and Pharmacology at Icahn Mount Sinai, and Clifford J. Rosen, MD, at the MaineHealth Institute for Research in Scarborough, Maine. Dr. Zaidi and Dr. Rosen are Program Directors, and principal investigators of individual projects are Anne Schafer, MD, at the University of California in San Francisco, as well as scientists at Icahn Mount Sinai, including Tony Yuen, PhD, Associate Professor and Research Director of the Center for Translational Medicine and Pharmacology, and Daria Lizneva, MD, PhD, Associate Professor of Pharmacological Sciences. Together, the investigators will work toward translating their findings into viable treatments for patients.

“We are delighted that the NIH has recognized the potential of our work by awarding this generous grant,” says Dr. Zaidi, the Mount Sinai Professor of Clinical Medicine at Icahn Mount Sinai. “Our focus for more than 25 years has been on identifying actionable targets for major public health diseases. This research offers the potential for a new drug for menopause and could also possibly help advance treatments for Alzheimer’s disease, obesity, and osteoporosis, affecting millions of people worldwide.”