Toggle light / dark theme

How a Neurotransmitter May Be the Key in Controlling Alzheimer’s Toxicity

Summary: Study reveals how somatostatin and copper affect amyloid beta in Alzheimer’s disease pathology.

Source: KAIST

With nearly 50 million dementia patients worldwide, and Alzheimers’s disease is the most common neurodegenerative disease. Its main symptom is the impairment of general cognitive abilities, including the ability to speak or to remember.

The importance of finding a cure is widely understood with increasingly aging population and the life expectancy being ever-extended. However, even the cause of the grim disease is yet to be given a clear definition.

A ‘consciousness conductor’ synchronizes and connects mouse brain areas

For scientists searching for the brain’s ‘control room, an area called the claustrum has emerged as a compelling candidate. This little-studied deep brain structure is thought to be the place where multiple senses are brought together, attention is controlled, and consciousness arises. Observations in mice now support the role of the claustrum as a hub for coordinating activity across the brain. New research from the RIKEN Center for Brain Science (CBS) shows that slow-wave brain activity, a characteristic of sleep and resting states, is controlled by the claustrum. The synchronization of silent and active states across large parts of the brain by these slow waves could contribute to consciousness.

A serendipitous discovery actually led Yoshihiro Yoshihara, team leader at CBS, to investigate the claustrum. His lab normally studies the sense of smell and the detection of pheromones, but they chanced upon a genetically engineered mouse strain with a specific population of brain cells that was present only in the claustrum. These neurons could be turned on using optogenetic technology or selectively silenced through , thus enabling the study of what turned out to be a vast, claustrum-controlled network. The study by Yoshihara and colleagues was published in Nature Neuroscience on May 11.

They started out by mapping the claustrum’s inputs and outputs and found that many higher-order brain areas send connections to the claustrum, such as those involved in sensation and motor control. Outgoing connections from the claustrum were broadly distributed across the brain, reaching numerous brain areas such as prefrontal, orbital, cingulate, motor, insular, and entorhinal cortices. “The claustrum is at the center of a widespread brain network, covering areas that are involved in cognitive processing,” says co-first author Kimiya Narikiyo. “It essentially reaches all higher brain areas and all types of neurons, making it a potential orchestrator of brain-wide activity.”

Researchers find a better way to measure consciousness

Millions of people are administered general anesthesia each year in the United States alone, but it’s not always easy to tell whether they are actually unconscious.

A small proportion of those patients regain some awareness during medical procedures, but a new study of the activity that represents could prevent that potential trauma. It may also help both people in comas and scientists struggling to define which parts of the brain can claim to be key to the conscious mind.

“What has been shown for 100 years in an unconscious state like sleep are these slow waves of electrical activity in the brain,” says Yuri Saalmann, a University of Wisconsin-Madison psychology and neuroscience professor. “But those may not be the right signals to tap into. Under a number of conditions—with different anesthetic drugs, in people that are suffering from a coma or with or other clinical situations—there can be high-frequency activity as well.”

On black holes, holography, the Quantum Extended Church-Turing Thesis, fully homomorphic encryption, and brain uploading

I promise you: this post is going to tell a scientifically coherent story that involves all five topics listed in the title. Not one can be omitted.

My story starts with a Zoom talk that the one and only Lenny Susskind delivered for the Simons Institute for Theory of Computing back in May. There followed a panel discussion involving Lenny, Edward Witten, Geoffrey Penington, Umesh Vazirani, and your humble shtetlmaster.

Lenny’s talk led up to a gedankenexperiment involving an observer, Alice, who bravely jumps into a specially-prepared black hole, in order to see the answer to a certain computational problem in her final seconds before being ripped to shreds near the singularity. Drawing on earlier work by Bouland, Fefferman, and Vazirani, Lenny speculated that the computational problem could be exponentially hard even for a (standard) quantum computer. Despite this, Lenny repeatedly insisted—indeed, he asked me again to stress here—that he was not claiming to violate the Quantum Extended Church-Turing Thesis (QECTT), the statement th at all of nature can be efficiently simulated by a standard quantum computer. Instead, he was simply investigating how the QECTT needs to be formulated in order to be a true statement.

New evidence hints at the role of gut microbiota in autistic spectrum disorder

Autism spectrum disorder (ASD) is a neurological and developmental condition that affects how humans communicate, learn new things and behave. Symptoms of ASD can include difficulties in interacting with others and adapting to changes in routine, repetitive behaviors, irritability and restricted or fixated interests for specific things.

While symptoms of autism can emerge at any age, the first signs generally start to show within the first two years of a child’s life. People with ASD can encounter numerous challenges, which can be addressed through support services, talk therapy and sometimes medication.

To this day, neuroscientists and have not identified the primary causes of ASD. Nonetheless, past findings suggest that it could be caused by the interaction of specific genes with environmental factors.

Social effects of friendships for people with learning disabilities and/or autism

In our latest article, our Divisional Chief Nurse, Clare, discusses the social effects of friendships for people with learning disabilities and/or autism and the importance of those friendships. She also discusses how COVID-19 and the different restrictions have affected people with learning disabilities and/or autism and how best to support them.

Children who lack sleep may experience detrimental impact on brain and cognitive development that persists over time

Elementary school-age children who get less than nine hours of sleep per night have significant differences in certain brain regions responsible for memory, intelligence and well-being compared to those who get the recommended nine to 12 hours of sleep per night, according to a new study led by University of Maryland School of Medicine (UMSOM) researchers. Such differences correlated with greater mental health problems, like depression, anxiety, and impulsive behaviors, in those who lacked sleep. Inadequate sleep was also linked to cognitive difficulties with memory, problem solving and decision making. The findings were published today in the journal The Lancet Child & Adolescent Health.

The American Academy of Sleep Medicine recommends that aged six to 12 years of age sleep 9 to 12 hours per night on a regular basis to promote optimal health. Up until now, no studies have examined the long-lasting impact of insufficient sleep on the neurocognitive development of pre-teens.

To conduct the study, the researchers examined data that were collected from more than 8,300 children aged nine to 10 years who were enrolled in the Adolescent Brain Cognitive Development (ABCD) study. They examined MRI images, , and surveys completed by the participants and their parents at the time of enrollment and at a two-year follow-up visit at 11 to 12 years of age. Funded by the National Institutes of Health (NIH), the ABCD study is the largest long-term study of brain development and child health in the U.S.

Does Superdeterminism save Quantum Mechanics? Or does it kill free will and destroy science?

Check out the math & physics courses that I mentioned (many of which are free!) and support this channel by going to https://brilliant.org/Sabine/ where you can create your Brilliant account. The first 200 will get 20% off the annual premium subscription.

This is a video I have promised you almost two years ago: How does superdeterminism make sense of quantum mechanics? It’s taken me a long time to finish this because I have tried to understand why people dislike the idea that everything is predetermined so much. I hope that in this video I have addressed the biggest misconceptions. I genuinely think that discarding superdeterminism unthinkingly is the major reason that research in the foundations of physics is stuck.

If you want to know more about superdeterminism, these two papers (and references therein) may give you a good starting point:

https://arxiv.org/abs/1912.06462
https://arxiv.org/abs/2010.

You can support me on Patreon: https://www.patreon.com/Sabine.

0:00 Intro.