Menu

Blog

Archive for the ‘neuroscience’ category: Page 617

Dec 1, 2020

Ever wonder how LSD works? An answer has been discovered

Posted by in categories: biotech/medical, neuroscience

UNC School of Medicine researchers identified the amino acid responsible for the trip.

Dec 1, 2020

Simulations open a new way to reverse cell aging

Posted by in categories: biotech/medical, engineering, life extension, neuroscience

Simulations that model molecular interactions have identified an enzyme that could be targeted to reverse a called cellular senescence. The findings were validated with laboratory experiments on and equivalent tissues, and published in the Proceedings of the National Academy of Sciences (PNAS).

“Our research opens the door for a new generation that perceives aging as a reversible biological phenomenon,” says Professor Kwang-Hyun Cho of the Department of Bio and Brain engineering at the Korea Advanced Institute of Science and Technology (KAIST), who led the research with colleagues from KAIST and Amorepacific Corporation in Korea.

Cells respond to a variety of factors, such as oxidative stress, DNA damage, and shortening of the telomeres capping the ends of chromosomes, by entering a stable and persistent exit from the . This process, called cellular senescence, is important, as it prevents damaged from proliferating and turning into . But it is also a natural process that contributes to aging and . Recent research has shown that cellular senescence can be reversed. But the laboratory approaches used thus far also impair tissue regeneration or have the potential to trigger malignant transformations.

Dec 1, 2020

First blood test to help diagnose Alzheimer’s goes on sale

Posted by in categories: biotech/medical, neuroscience

The test has not been approved by the FDA.


How is Alzheimer’s diagnosed? New blood test to help diagnose Alzheimer’s is not approved by the FDA.

Dec 1, 2020

Drug reverses age-related cognitive decline within days

Posted by in categories: biotech/medical, life extension, neuroscience

Just a few doses of an experimental drug can reverse age-related declines in memory and mental flexibility in mice, according to a new study by UC San Francisco scientists. The drug, called ISRIB, has already been shown in laboratory studies to restore memory function months after traumatic brain injury (TBI), reverse cognitive impairments in Down Syndrome, prevent noise-related hearing loss, fight certain types of prostate cancer, and even enhance cognition in healthy animals.

In the new study, published December 1, 2020 in the open-access journal eLife, researchers showed rapid restoration of youthful cognitive abilities in aged mice, accompanied by a rejuvenation of brain and that could help explain improvements in brain function.

“ISRIB’s extremely rapid effects show for the first time that a significant component of age-related cognitive losses may be caused by a kind of reversible physiological “blockage” rather than more permanent degradation,” said Susanna Rosi, Ph.D., Lewis and Ruth Cozen Chair II and professor in the departments of Neurological Surgery and of Physical Therapy and Rehabilitation Science.

Nov 30, 2020

Molecular mechanism of long-term memory discovered

Posted by in categories: biotech/medical, neuroscience

Researchers at the University of Basel have discovered a molecular mechanism that plays a central role in intact long-term memory. This mechanism is also involved in physiological memory loss in old age.

Many , from worms to humans, have differentiated memory functions, such as short-term and long-term memory. Interestingly, at the cell and molecule level, many of these functions are nearly identical from life form to life form. Detecting the molecules involved in memory processes is of great importance to both basic and , since it can point the way to the development of drugs for memory disorders.

By studying roundworms (Caenorhabditis elegans), scientists at the Transfaculty Research Platform for Molecular and Cognitive Neurosciences (MCN) at the University of Basel have now discovered a of long-term memory that is also involved in memory loss in old age. They report on their findings in the journal Current Biology.

Nov 29, 2020

World’s smallest atom-memory unit created

Posted by in categories: computing, information science, neuroscience, particle physics

Faster, smaller, smarter and more energy-efficient chips for everything from consumer electronics to big data to brain-inspired computing could soon be on the way after engineers at The University of Texas at Austin created the smallest memory device yet. And in the process, they figured out the physics dynamic that unlocks dense memory storage capabilities for these tiny devices.

The research published recently in Nature Nanotechnology builds on a discovery from two years ago, when the researchers created what was then the thinnest storage device. In this new work, the researchers reduced the size even further, shrinking the cross section area down to just a single square nanometer.

Getting a handle on the physics that pack dense memory storage capability into these devices enabled the ability to make them much smaller. Defects, or holes in the material, provide the key to unlocking the high-density memory storage capability.

Nov 29, 2020

Your Dreams Are More Complex Depending on What Stage of Sleep You’re In, Study Finds

Posted by in category: neuroscience

The quality and complexity of dreams appear to change with our stages of sleep, according to a new analysis.

Before the twenty-first century, we used to think dreams only occurred during rapid eye movement (REM) sleep, but more recent research shows people sometimes recall dreams even when they are woken from non-REM stages of sleep.

Whether these two types of dreaming are inherently different is something neuroscientists are still trying to figure out.

Nov 29, 2020

New psychology study provides insight into fundamental cognitive processes linked to dogmatism

Posted by in categories: climatology, computing, neuroscience

Dogmatic individuals tend to form less accurate judgements thanks to a generic resistance to seeking out additional information, according to new research published in the Proceedings of the National Academy of Sciences (PNAS). The findings shed new light on the cognitive underpinnings of dogmatic worldviews.

“We have never been so free to decide if we have enough evidence about something or whether we should seek out further information from a reliable source before believing it,” explained study author Lion Schulz, a doctoral researcher in the Department of Computational Neuroscience at the Max Planck Institute for Biological Cybernetics.

“In turn, if we don’t check on quick and uncertain judgements, this can leave us quite vulnerable to misinformation. Understanding the mechanism behind such decisions and how different people approach them is therefore important when we try to understand the current societal climate.”

Nov 28, 2020

Gut microbes: The key to normal sleep

Posted by in categories: biotech/medical, food, information science, neuroscience

With fall and winter holidays coming up, many will be pondering the relationship between food and sleep. Researchers led by Professor Masashi Yanagisawa at the University of Tsukuba in Japan hope they can focus people on the important middlemen in the equation: bacterial microbes in the gut. Their detailed study in mice revealed the extent to which bacteria can change the environment and contents of the intestines, which ultimately impacts behaviors like sleep.

The experiment itself was fairly simple. The researchers gave a group of a powerful cocktail of antibiotics for four weeks, which depleted them of intestinal microorganisms. Then, they compared intestinal contents between these mice and control mice who had the same diet. Digestion breaks food down into bits and pieces called metabolites. The research team found significant differences between metabolites in the microbiota-depleted mice and the control mice. As Professor Yanagisawa explains, “we found more than 200 differences between mouse groups. About 60 normal metabolites were missing in the microbiota-depleted mice, and the others differed in the amount, some more and some less than in the control mice.”

The team next set out to determine what these metabolites normally do. Using metabolome set enrichment analysis, they found that the biological pathways most affected by the antibiotic treatment were those involved in making neurotransmitters, the molecules that cells in the brain use to communicate with each other. For example, the tryptophan–serotonin pathway was almost totally shut down; the microbiota-depleted mice had more tryptophan than controls, but almost zero serotonin. This shows that without important gut microbes, the mice could not make any serotonin from the tryptophan they were eating. The team also found that the mice were deficient in vitamin B6 metabolites, which accelerate production of the neurotransmitters serotonin and dopamine.

Nov 27, 2020

Brain Scans Confirm There’s a Part of You That Remains ‘You’ Throughout Your Life

Posted by in categories: futurism, neuroscience

At the very core of your identity a kernel of self awareness combines memories of the past with the fleeting sensations of the present, and adds a touch of anticipation for the future.

The question of whether this ongoing sense of ‘you’ is as robust as it feels has intrigued philosophers and psychologists throughout the ages. A new, small psychobiological study weighs in, looking at brain scans to conclude that at least some part of you is indeed consistent as you grow and age.

“In our study, we tried to answer the question of whether we are the same person throughout our lives,” says Miguel Rubianes, a neuroscientist from the Complutense University of Madrid.

Page 617 of 1,031First614615616617618619620621Last