Toggle light / dark theme

New research from the RIKEN Center for Brain Science (CBS) in Japan shows that a deficit in histone methylation could lead to the development of autism spectrum disorders (ASD). A human variant of the SUV39H2 gene led researchers to examine its absence in mice. Published in Molecular Psychiatry, the study found that when absent, adult mice exhibited cognitive inflexibility similar to what occurs in autism, and embryonic mice showed misregulated expression of genes related to brain development. These findings represent the first direct link between the SUV39H2 gene and ASD.

Genes are turned on and off throughout our development. But genetic variation means that what is turned off in some people remains turned on in others. This is why, for example, some adults can digest dairy products and others are lactose intolerant; the gene for making the enzyme lactase is turned off when some people become adults, but not others. One way that genes can be turned on and off is through a process called histone methylation in which special enzymes transfer methyl groups to histone proteins that are wrapped around DNA.

Variations in genes related to methylation during brain development can lead to serious problems. One such variation occurs in a rare disorder called Kleefstra Syndrome, in which a mutation prevents methylation of H3K9—a specific location on histone H3. Because Kleefstra Syndrome resembles autism in some ways, RIKEN CBS researchers led by Takeo Yoshikawa looked for autism-specific variations in genes that can modify H3K9. Among nine such genes, they found one variant in an H3K9 methyltransferase gene— SUV39H2 —that was present in autism, and the mutated SUV39H2 prevented methylation when tested in the lab. Similar loss-of-function results were found for the mouse version of the variant.

Harvard scientists have found that a single dose of psilocybin given to mice induces a rapid and long-lasting increase in connections between pyramidal neurons in the medial frontal cortex, an area of the brain known to be involved in control and decision-making. Their new findings are published in the journal Neuron.

Psilocybin — the active component in so-called “magic” mushrooms — has been shown to have profound and long-lasting effects on personality and mood. Preliminary studies have provided hope that psilocybin could help to relieve depression symptoms and treat other mental disorders. But the mechanisms behind these effects remain unclear.

A team of researchers at Yale University were interested in examining whether the lasting therapeutic effects of psilocybin might be caused in part by the substance’s ability to enhance neuroplasticity in the brain.

Something to consider.

“The whole idea of lifestyle choices as something everyone can tap into is misleading, when in fact that choice is constrained by what is available to people,” he said. “This is where policy solutions or investments into these neighborhoods to make up for historical disinvestment becomes so important.”


Summary: The neighborhood you live in could have an impact on your brain and cardiovascular health, a new study reports.

Source: American Heart Association

Now just need to go to rat monkey human.


Researchers at the University of Chicago and the U.S. Department of Energy’s (DOE) Argonne National Laboratory have imaged an entire mouse brain across five orders of magnitude of resolution, a step which researchers say will better connect existing imaging approaches and uncover new details about the structure of the brain.

The advance, which was published on June 9 in NeuroImage, will allow scientists to connect biomarkers at the microscopic and macroscopic level. It leveraged existing advanced X-ray microscopy techniques at the Advanced Photon Source (APS), a DOE Office of Science User Facility at Argonne, to bridge the gap between MRI and electron microscopy imaging, providing a viable pipeline for multiscale whole brain imaging within the same brain.

“Argonne had this extremely powerful X-ray microscope, and it hadn’t been used for brain mapping yet, so we decided to try it out.” — Assistant Professor Bobby Kasthuri

He has not been able to speak since 2003, when he was paralyzed at age 20 by a severe stroke after a terrible car crash.

Now, in a scientific milestone, researchers have tapped into the speech areas of his brain — allowing him to produce comprehensible words and sentences simply by trying to say them. When the man, known by his nickname, Pancho, tries to speak, electrodes implanted in his brain transmit signals to a computer that displays his intended words on the screen.

His first recognizable sentence, researchers said, was, “My family is outside.”

Investing in the convergence of bioelectrics & biologics for regeneration & healing — howard J. leonhardt, founder, leonhardt ventures.


Howard Leonhardt is the Founder of Leonhardt Ventures, the world’s first Innovation Accelerator focused on the convergence of bioelectrics & biologics for organ regeneration and tissue healing.

Howard is an accomplished inventor and serial entrepreneur, with 21 U.S. patents, over 100 patent claims for products for treating cardiovascular disease, and has over 40 new patent claims pending. His TALENT (Taheri-Leonhardt) stent graft, developed in the early 1990′s, holds a leading world market share for repairing aortic aneurysms without surgery.

NAD Coenzymes, Metabolic Stress, And Novel Preventative And Therapeutic Interventions — Dr. Charles Brenner, Ph.D., City of Hope.


Dr. Charles Brenner Ph.D. is the Alfred E Mann Family Foundation Chair in Diabetes and Cancer Metabolism, and Professor and Chair of the Department of Diabetes & Cancer Metabolism, at the City of Hope Comprehensive Cancer Center (https://www.cityofhope.org/faculty/charles-brenner).

With his Ph.D. in Cancer Biology from Stanford University, Dr. Brenner’s laboratory focuses on disturbances in nicotinamide adenine dinucleotide (NAD), the central catalyst of metabolism, in diseases and conditions of metabolic stress (https://www.cityofhope.org/charles-brenner-lab).

We have a much better understanding of physics than we do of consciousness. I consider ways in which intrinsically mental aspects of fundamental ontology might induce modifications of the known laws of physics, or whether they could be relevant to accounting for consciousness if no such modifications exist. I suggest that our current knowledge of physics should make us skeptical of hypothetical modifications of the known rules, and that without such modifications it’s hard to imagine how intrinsically mental aspects could play a useful explanatory role. Draft version of a paper submitted to Journal of Consciousness Studies, special issue responding to Philip Goff’s Galileo’s Error: Foundations for a New Science of Consciousness.

Interested in living longer? You are probably going to get TPE at some point. The Conboys are looking for funding for human trials to produce a product in 3–4 years. Here we have infor on what it is and how it works plus actual human results to date (starting at 10 minutes).


In Part III, Dr Kiprov, discusses the history of moving from the Conboy’s experiments in the lab to the process used in the clinic and reasons for the choices made. He also covers the benefits that he has seen with plasma exchange in the clinic.

Part I Video Link https://youtu.be/jpJlgSzRdyo.

Researchers at UC San Francisco have successfully developed a “speech neuroprosthesis” that has enabled a man with severe paralysis to communicate in sentences, translating signals from his brain to the vocal tract directly into words that appear as text on a screen.

The achievement, which was developed in collaboration with the first participant of a clinical research trial, builds on more than a decade of effort by UCSF neurosurgeon Edward Chang, MD, to develop a technology that allows people with paralysis to communicate even if they are unable to speak on their own. The study appears July 15 in the New England Journal of Medicine.