Menu

Blog

Archive for the ‘neuroscience’ category: Page 607

Jan 10, 2021

Vocal convergence in a multi-level primate society: insights into the evolution of vocal learning

Posted by in categories: evolution, genetics, neuroscience

The extent to which nonhuman primate vocalizations are amenable to modification through experience is relevant for understanding the substrate from which human speech evolved. We examined the vocal behaviour of Guinea baboons, Papio papio, ranging in the Niokolo Koba National Park in Senegal. Guinea baboons live in a multi-level society, with units nested within parties nested within gangs. We investigated whether the acoustic structure of grunts of 27 male baboons of two gangs varied with party/gang membership and genetic relatedness. Males in this species are philopatric, resulting in increased male relatedness within gangs and parties. Grunts of males that were members of the same social levels were more similar than those of males in different social levels (N = 351 dyads for comparison within and between gangs, and N = 169 dyads within and between parties), but the effect sizes were small. Yet, acoustic similarity did not correlate with genetic relatedness, suggesting that higher amounts of social interactions rather than genetic relatedness promote the observed vocal convergence. We consider this convergence a result of sensory–motor integration and suggest this to be an implicit form of vocal learning shared with humans, in contrast to the goal-directed and intentional explicit form of vocal learning unique to human speech acquisition.

One of the key preconditions for the development of speech is the ability to adjust vocal output in response to auditory input. Humans are exceptionally proficient at vocal learning. Although effortless speech learning is confined to the early years [1], humans still possess the ability to imitate sounds voluntarily and acquire further languages throughout their lives. Numerous comparative studies have aimed at elucidating the evolutionary origins of vocal learning within the primate lineage, to uncover the extent to which nonhuman primates reveal evidence for vocal plasticity, and whether such plasticity may be conceived as a pre-adaptation for the evolution of speech [2, 3].

Despite considerable research effort, it appears that the ability to learn sounds from auditory experience in most nonhuman primate species is limited. Unlike humans or some songbird species, nonhuman primates are not obligatory vocal learners that require species-specific auditory input to develop their normal vocal repertoires [4, 5]. Early attempts to train a young chimpanzee to produce speech sounds yielded disappointing results and prompted most of the ‘ape language’ projects to turn to another modality, using either symbol systems or sign languages [6]. Studies of the neural basis of vocal production in different monkey species found that the animals lack the neural connections necessary for the volitional control over the fine structure of vocalizations, although they exert greater control over the usage of calls (reviewed in [2]).

Jan 10, 2021

Biotin, mitochondria, and dementia

Posted by in categories: biotech/medical, food, genetics, neuroscience

Biotin is also known as vitamin H, named for the German words “Haar” and “Haut,” which mean hair and skin. This was due to the fact that even slight deficiencies cause hair thinning, skin rash or brittle fingernails. New research, just published in PNAS, now shows that some forms of severe neurodegeneration, like the frontotemporal dementia seen in Alzheimer’s and Parkinson’s, can directly result from lack of sufficient biotin.

The authors discovered this by looking at fruit flies with dementia. Now, before anyone chuckles, actually make a nice model of Alzheimer’s or other diseases when they are given the right . Human versions of defective MAPT (tau) genes cause these flies to develop tauopathies that resemble those that occur in our own brains. To delve deeper into the neurotoxicity of tau, they looked at over 7000 fly genes in a forward genetic screen before zeroing in on one significantly modified toxicity of the tauR406W mutant. This gene, Btnd, encodes the biotinidase enzyme that extracts biotin from food sources or recycles it from used enzymes.

Jan 9, 2021

Lab-Made Mini Brains Produce Brain Waves Just Like Those of Preterm Babies

Posted by in category: neuroscience

Circa 2019

Livescience.com | By LIVESCIENCE


Scientists created miniature brains in the lab that formed intricate networks and produced brain waves similar to those fired by the developing brain of a preterm human baby, according to a new study.

Continue reading “Lab-Made Mini Brains Produce Brain Waves Just Like Those of Preterm Babies” »

Jan 9, 2021

The Mathematics of Consciousness

Posted by in categories: mathematics, neuroscience

https://youtube.com/watchv=efVBUDnD_no&feature=share

Go to http://ow.ly/4nK830rrtFY to check out The Great Courses Plus and start your free trial!

You can join the chat about this video today (Saturday, Jan 9) at noon Eastern Time or 6pm CET here:
https://talk.conversful.com/c?id=-MQTZqlun1m_0Hw1TSl5

Please support me on Patreon: https://www.patreon.com/Sabine.

Continue reading “The Mathematics of Consciousness” »

Jan 8, 2021

Is neuroscience the key to protecting AI from adversarial attacks?

Posted by in categories: biotech/medical, cybercrime/malcode, neuroscience, robotics/AI

Deep learning has come a long way since the days when it could only recognize handwritten characters on checks and envelopes. Today, deep neural networks have become a key component of many computer vision applications, from photo and video editors to medical software and self-driving cars.

Roughly fashioned after the structure of the brain, neural networks have come closer to seeing the world as humans do. But they still have a long way to go, and they make mistakes in situations where humans would never err.

These situations, generally known as adversarial examples, change the behavior of an AI model in befuddling ways. Adversarial machine learning is one of the greatest challenges of current artificial intelligence systems. They can lead to machine learning models failing in unpredictable ways or becoming vulnerable to cyberattacks.

Jan 8, 2021

Focused ultrasound shows potential to benefit people with Parkinson’s disease

Posted by in categories: biotech/medical, health, neuroscience

A scalpel-free alternative to brain surgery has the potential to benefit people with Parkinson’s disease symptoms that are much more severe on one side of the body, new research suggests.

More testing is needed, but the approach, which uses a technology called focused ultrasound, could offer a new option for patients whose symptoms are poorly controlled by medications and those who cannot or do not wish to undergo traditional brain surgery.

“This small brain region, the subthalamic nucleus, had a very strong and potent effect on parkinsonian symptoms when we targeted it with precise, focused ultrasound energy,” said researcher Jeff Elias, MD, a neurosurgeon at UVA Health and a pioneer in the field of focused ultrasound. “The key for the ultimate adoption of this new procedure will be further refinements of the technology to ensure reliability and safety.”

Jan 7, 2021

Researchers Identify and Characterize 3 Molecular Subtypes of Alzheimer’s

Posted by in categories: biotech/medical, neuroscience

Summary: Using data from RNA sequencing, researchers have identified three molecular subtypes of Alzheimer’s disease.

Source: Mount Sinai Hospital.

Researchers at the Icahn School of Medicine at Mount Sinai have identified three major molecular subtypes of Alzheimer’s disease (AD) using data from RNA sequencing. The study advances our understanding of the mechanisms of AD and could pave the way for developing novel, personalized therapeutics.

Jan 6, 2021

Study explores the effects of immune responses on the aging brain

Posted by in categories: biotech/medical, life extension, neuroscience

Has some interesting parts, might interest some.

(not sure how novel)


As human beings age, the functioning of organs gradually deteriorates. While countless past studies have investigated the effects of aging on the human body, brain and on cognition, the neural mechanisms and environmental factors that can accelerate or slow down these effects are not yet fully understood.

Continue reading “Study explores the effects of immune responses on the aging brain” »

Jan 5, 2021

This Drone Sniffs Out Odors With a Real Moth Antenna

Posted by in categories: chemistry, cyborgs, drones, neuroscience

“It’s all thanks to the sacrifice of the hawk moth Manduca sexta, which is an extremely sensitive smeller, like other moths. When a moth picks up a scent, like that of a flower or a potential mate, the odors bind to proteins inside the antennae, and these proteins in turn activate neurons dedicated to specific chemicals. That means the antennae are producing electrical signals that researchers can tap into. In order to create a sort of moth-drone cyborg, mechanical engineer Melanie Anderson of the University of Washington cold-anesthetized a hawk moth in a freezer before removing its antennae. Then she cut both ends off of a single antenna and attached each to an itty-bitty wire hooked up to an electrical circuit. “A lot like a heart monitor, which measures the electrical voltage that is produced by the heart when it beats, we measure the electrical signal produced by the antenna when it smells odor,” says Anderson, lead author on a recent paper in the journal Bioinspiration and Biomimetics describing the research. “And very similarly, the antenna will produce these spike-shaped pulses in response to patches of odor.””


Researchers slap a living antenna on a drone to give the machine an insanely keen sense of smell. Ladies and gentlemen, meet the “Smellicopter.”

Jan 3, 2021

Scientists Explore Deficits in Processing Speed in Individuals With Spinal Cord Injury

Posted by in categories: life extension, neuroscience

Summary: People with spinal cord injuries have the same brain activity during processing speed tasks as healthy older adults. The findings suggest the theory of accelerated cognitive aging following SCI is correct.

Source: Kessler Foundation.

A team of rehabilitation researchers has studied processing speed deficits in individuals with spinal cord injury (SCI), comparing their brain activation patterns with those of healthy age-matched controls, and older healthy individuals. They found that the SCI group and older controls had similar activation patterns, but the SCI group differed significantly from their age-matched controls.

Page 607 of 1,030First604605606607608609610611Last