Toggle light / dark theme

A new Jell-O-like material could replace metals as electrical interfaces for pacemakers, cochlear implants, and other electronic implants.

Do an image search for “electronic implants,” and you’ll draw up a wide assortment of devices, from traditional pacemakers and cochlear implants to more futuristic brain and retinal microchips aimed at augmenting vision, treating depression, and restoring mobility.

Some implants are hard and bulky, while others are flexible and thin. But no matter their form and function, nearly all implants incorporate electrodes — small conductive elements that attach directly to target tissues to electrically stimulate muscles and nerves.

A new type of macrophage recently identified in atherosclerotic lesions could provide a missing link in understanding the inflammatory origins of the common yet fatal condition.

Atherosclerosis is a common condition in which an accumulation of fat, named plaque, builds up on the innermost walls of arteries, causing them to become narrow and restrict the blood flow to such as the heart and the brain. It can be life-threatening if untreated—narrow arteries increase the risk of a blockage and lead to a or stroke.

Macrophages are immune cells that play essential roles in organ homeostasis as well as infection and injury. Key to their success is the ability to alter their transcriptional patterns of gene expression to perform highly-specialized roles in specific organs and tissues. However, their prominent role means that when things go wrong, macrophages can be impactful drivers of disease.

Engineers from Rice University and the University of Maryland have created full-motion video technology that could potentially be used to make cameras that peer through fog, smoke, driving rain, murky water, skin, bone and other media that reflect scattered light and obscure objects from view.

“Imaging through scattering media is the ‘holy grail problem’ in at this point,” said Rice’s Ashok Veeraraghavan, co-corresponding author of an open-access study published today in Science Advances. “Scattering is what makes light—which has lower wavelength, and therefore gives much better spatial resolution—unusable in many, many scenarios. If you can undo the effects of scattering, then imaging just goes so much further.”

Veeraraghavan’s lab collaborated with the research group of Maryland co-corresponding author Christopher Metzler to create a technology they named NeuWS, which is an acronym for “neural wavefront shaping,” the technology’s core technique.

While mitochondria play a crucial role in producing the energy our cells need to carry out their various functions, when damaged, they can have profound effects on cellular function and contribute to the development of various diseases.

Broken-down are usually removed and recycled through a garbage disposal process known as “mitophagy.”

PINK1 and Parkin are two proteins vital to this process, responsible for “tagging” malfunctioning mitochondria for destruction. In Parkinson’s disease, mutations in these proteins can result in the accumulation of damaged mitochondria in the brain, which can lead to motor symptoms such as tremors, stiffness and difficulty with movement.

Scientists at the University of Cambridge have used powerful new brain imaging techniques to reveal a neurochemical imbalance within regions of the frontal lobes in patients with obsessive-compulsive disorder (OCD). The research findings are published in the journal Nature Communications.

The study shows that the balance between glutamate and GABA—two major neurotransmitter chemicals—is “disrupted” in OCD patients in two frontal regions of the brain.

Researchers also found that people who do not have OCD but are prone to habitual and compulsive behavior have increased glutamate levels in one of these brain regions.

The idea that our mind could live on in another form after our physical body dies has been a recurring theme in science fiction since the 1950s. Recent television series such as Black Mirror and Upload, as well as some games, demonstrate our continued fascination with this idea. The concept is known as mind uploading.

Recent developments in science and technology are taking us closer to a time when mind uploading could graduate from science fiction to reality.

In 2016, BBC Horizon screened a programme called The Immortalist, in which a
Russian millionaire unveiled his plans to work with neuroscientists, robot builders and other experts to create technology that would allow us to upload our minds to a computer in order to live forever.

At the time, he confidently predicted that this would be achieved by 2045. This seems unlikely, but we are making small but significant steps towards a better understanding of the human brain — and potentially the ability to emulate, or reproduce, it.

Year 2022 😗😁


Summary: A rare genetic mutation that causes blindness also appears to be associated with above-average intelligence, a new study reports.

Source: University of Leipzig

Synapses are the contact points in the brain via which nerve cells ‘talk’ to each other. Disturbances in this communication lead to diseases of the nervous system, since altered synaptic proteins, for example, can impair this complex molecular mechanism. This can result in mild symptoms, but also very severe disabilities in those affected.

The interest of the two neurobiologists Professor Tobias Langenhan and Professor Manfred Heckmann, from Leipzig and Würzburg respectively, was aroused when they read in a scientific publication about a mutation that damages a synaptic protein.