Toggle light / dark theme

Biodegradable devices that generate energy from the same effect behind most static electricity could help power transient electronic implants that dissolve in the body, researchers say.

Implantable electronic devices now help treat everything from damaged hearts to traumatic brain injuries. For example, pacemakers can help keep hearts beating properly, while brain sensors can monitor patients for potentially dangerous swelling in the brain.

However, when standard electronic implants run out of power, they need to be removed lest they eventually become sites of infection. But their surgical removal can result in potentially dangerous complications. Scientists are developing transient implantable electronics that dissolve once they are no longer needed, but these mostly rely on external sources of power, limiting their applications.

A study published in the journal Stem Cell Reports on March 23, led by Dr. Ryosuke Tsuchimochi and Professor Jun Takahashi, examined the effects of combining cell transplantation and gene therapy for axonal outgrowth in the central nervous system. The authors demonstrated the potential of this combinatorial therapy for promoting axonal regeneration in patients with central nervous system injuries.

Stroke and traumatic brain/ often damage the corticospinal tract (CST), composed of descending axonal tracts from the motor cortex down the spinal cord, that innervates to activate skeletal muscles for controlling voluntary movements. Pharmacological and surgical interventions, in conjunction with rehabilitation, can maintain some lost motor functions, but patients with such acute neural injuries often suffer from lifelong severe motor impairment.

Cell replacement therapy—the implantation of new neurons into damaged —is viewed as a last hope that could help patients recover sufficient motor functions to live a normal life. The research team previously demonstrated that brain tissues transplanted into injured mouse brains could find their way to the CST and spinal cord but believed that further optimization of the host environment was necessary to promote CST reconstruction and functional recovery.

Zoom Transcription: https://otter.ai/s/j26AyG6FRGCfmHCNLGe5Pg.

Help us welcome Anders Sandberg to the Foresight family! As a Senior Research Fellow in Philosophy, we are proud that he will be joining a fantastic group of Foresight Senior Research Fellows: https://foresight.org/about-us/senior-research-fellows/

Anders will present a cherry-picked selection of his epic Grand Futures book project: What is available in the “nearer-term” for life if our immature civilization can make it past the tech/insight/coordination hurdles? We’ll focus on post-scarcity civilizations to get a sense of what is possible just past current human horizons in the hope it may inspire us to double down on solving humanity’s current challenges to unlock this next level.

Based on our Zoom polls, cognitive enhancement features as high interest for many of you and is also one of Anders’ main research interests. Let’s add a brief tour through different cognitive enhancement scenarios, their ethical considerations, and how to make progress in the right directions.

A new publication released today in The EMBO Journal identified a key protein in the molecular mechanism triggering neurogenesis in the hippocampus. They found that tight regulation of Yap1 activity is essential as dysregulation can cause tissue disruption seen in the early stages of brain cancer.

Neurogenesis is the process by which are produced by (NSCs) in the brain. Neurogenesis is a crucial process in embryo development, but it also continues in some after birth and all throughout adulthood. In adulthood, neurogenesis is mainly responsible for brain plasticity.

In the adult hippocampus, a brain area responsible for memory and learning, most are held at quiescence. This reversible pause protects stem cells against damage and controls the rate of neurogenesis. When necessary, the stem cells can be taken off this pause to undergo activation. The mechanisms controlling quiescence and activation are still not fully understood.

Deep brain stimulation (DBS) is an experimental treatment strategy which uses an implanted device to help patients with severe depression who have reached a point where no other treatment works.

But despite her involvement in the DBS collaboration, which involves neuroscientists, neurosurgeons, electrophysiologists, engineers and computer scientists, neurologist Helen Mayberg does not see it as a long-term solution.

“I hope I live long enough to see that people won’t require a hole in their brain and a device implanted in this way,” she says. “I often have a nightmare with my tombstone that kind of reads like, what did she think she was doing?”

Donald Hoffman interview on spacetime, consciousness, and how biological fitness conceals reality. We discuss Nima Arkani-Hamed’s Amplituhedron, decorated permutations, evolution, and the unlimited intelligence.

The Amplituhedron is a static, monolithic, geometric object with many dimensions. Its volume codes for amplitudes of particle interactions & its structure codes for locality and unitarity. Decorated permutations are the deepest core from which the Amplituhedron gets its structure. There are no dynamics, they are monoliths as in 2001: A Space Odyssey.

Background.
0:00 Highlights.
6:55 The specific limits of evolution by natural selection.
10:50 Don’s born in a San Antonio Army hospital in 1955 (and his parents’ background)
14:44 As a teenager big question he wanted answered, “Are we just machines?“
17:23 Don’s early work as a vision researcher; visual systems construct.
20:43 Carlos’s 3-part series on Fitness-Beats-Truth Theorem.

Fitness-Beats-Truth Theorem.