Menu

Blog

Archive for the ‘neuroscience’ category: Page 143

Apr 8, 2023

The Neuroscience of Learning

Posted by in categories: biotech/medical, chemistry, education, neuroscience

The neuroscience study opens new avenues for understanding the brain’s role in learning and education. As researchers uncover more about the mechanisms underlying acquiring knowledge, educators can implement evidence-based strategies to enhance student outcomes. This blog post delves into the fascinating world of neuroscience, explores how the brain learns, and examines various learning theories and strategies informed by neuroscientific research.

Understanding the Basics of Neuroscience

Neuroscience refers to studying the nervous system, focusing on its role in behavior, cognition, and learning. The human brain, a complex organ, contains billions of neurons that transmit information through electrical and chemical signals. These neurons form networks, and the brain’s organization into different regions allows it to carry out specific functions.

Apr 8, 2023

CARTA: Livesey-Primate Brain Development; Huttner-Neocortex Expansion; Kriegstein-Brain Expansion

Posted by in categories: biotech/medical, evolution, neuroscience

(Visit: http://www.uctv.tv/)
1:39 — Understanding Primate Brain Development Using Stem Cell Systems — Rick Livesey.
18:58 — Human-Specific Genes and Neocortex Expansion in Development and Evolution — Wieland Huttner.
37:17 — Cellular and Molecular Features of Human Brain Expansion and Evolution — Arnold Kriegstein.

The human brain is one of, if not the most important factor that distinguishes our species from all others. Three experts explore the use of stem cells in understanding the primate brain, genes that guided the evolution of the human brain, and the features that enabled the expansion of human neural characteristics. Recorded on 09/29/2017. Series: “CARTA — Center for Academic Research and Training in Anthropogeny” [11/2017] [Show ID: 32927].

Apr 7, 2023

Brain Doping: Super Brains Without The Need for Rest or Sleep? Science & Tech Documentary

Posted by in categories: biotech/medical, education, neuroscience, science

Forget about life-work-balance. A new generation of drugs promises unlimited increases in productivity without the need for rest or sleep.

“Brain doping” is the latest trend among high flyers. Pharmaceutical companies are developing pills that increase mental capability, stimulate desire, and heighten mood. A meaningful life full of happiness and success – without side effects.

Continue reading “Brain Doping: Super Brains Without The Need for Rest or Sleep? Science & Tech Documentary” »

Apr 7, 2023

False memories can form in the human brain in just a few seconds

Posted by in categories: law, neuroscience

Human memory has been shown to be highly fallible in recent years, but a new study on short term memory recall indicates that we can get details wrong within seconds of an event happening.

It has long been shown that human memory is highly fallible, with even ancient legal codes requiring more than one witness to corroborate accounts of a crime or events, but a new study reveals that people can create false memories within a second of the event being recalled.

The study, published this week in PLOS One, had hundreds of volunteers over the course of four experiments look at a sequence of letters and asked them to recall a single highlighted letter that they had been shown. In addition, some of the highlighted letters were reversed, meaning the respondent needed to recall that as well.

Apr 6, 2023

Using Photons as Neurotransmitters to Control the Activity of Neurons

Posted by in categories: chemistry, neuroscience

Summary: Researchers present a new system that uses photons instead of chemical neurotransmitters to control neural activity.

Source: ICFO

Our brains are made of billions of neurons, which are connected forming complex networks. They communicate between themselves by sending electrical signals, known as action potentials, and chemical signals, known as neurotransmitters, in a process called synaptic transmission.

Apr 6, 2023

Alzheimer’s disease: Deep brain stimulation may help improve symptoms

Posted by in categories: biotech/medical, neuroscience

Deep brain stimulation is a surgical procedure where electrodes are placed in specific areas of the brain. The electrodes are connected by wires to a small device, similar to a pacemaker, that is placed under the skin in the chest area.

The electrodes create electrical pulses that override abnormal signals that could cause neurological issues.

There has also recently been a move toward developing less invasive methods for deep brain stimulation.

Apr 6, 2023

Studying Consciousness Without Affecting It

Posted by in categories: electronics, neuroscience

Summary: Researchers found a way to assess consciousness without external stimulation, using a little-used approach where volunteers squeeze a force sensor with their hand when they breathe in and release it when they breathe out, resulting in more precise and sensitive measurements that may help improve treatment for insomnia and coma reversal.

Source: picower institute for learning and memory.

Studies of consciousness often run into a common conundrum of science—it’s hard to measure a system without the measurement affecting the system. Researchers assessing consciousness, for instance as volunteers receive anesthesia, typically use spoken commands to see if subjects can still respond, but that sound might keep them awake longer or wake them up sooner than normal.

Apr 6, 2023

How Our Brain Makes New Decisions

Posted by in category: neuroscience

Summary: Researchers have identified a mechanism within the brain that underlies when we apply stored knowledge to novel decision-making situations.

Source: Max Planck Society.

We regularly find ourselves in new shops or restaurants, we land at airports we don’t know or start a new job. In such situations, the remarkable flexibility of human behavior becomes apparent. Even in new situations, we can often predict the consequences of our actions and thus make appropriate decisions.

Apr 5, 2023

Danger or pleasure? How we learn to tell the difference

Posted by in categories: biotech/medical, chemistry, neuroscience

Deep within our brain’s temporal lobes, two almond-shaped cell masses help keep us alive. This tiny region, called the amygdala, assists with a variety of brain activities. It helps us learn and remember. It triggers our fight-or-flight response. It even promotes the release of a feel-good chemical called dopamine.

Scientists have learned all this by studying the amygdala over hundreds of years. But we still haven’t reached a full understanding of how these processes work.

Now, Cold Spring Harbor Laboratory neuroscientist Bo Li has brought us several important steps closer. His lab recently made a series of discoveries that show how called somatostatin-expressing (Sst+) central amygdala (CeA) neurons help us learn about threats and rewards. He also demonstrated how these neurons relate to dopamine. The discoveries could lead to future treatments for anxiety or .

Apr 4, 2023

Serotonin gates the transfer of visual information from the eyes to the thalamus

Posted by in categories: biotech/medical, neuroscience

Humans are known to perceive the environment around them differently based on the situation they are in and their own feelings and sensations. Internal states, such as fear, arousal or hunger can thus affect the ways in which sensory information is processed and registered by the brain.

Researchers at Beth Israel Deaconess Medical Center, Boston Children’s Hospital, and Peking University have recently carried out a study investigating the possible effects of , a neurotransmitter known to regulate sleep, mood, , and other inner states, in the processing of visual information. Their findings, published in Neuron, suggest that serotonergic neurons in the brainstem (i.e., the central trunk of the mammalian brain) gate the transfer of visual information from the eyes to the thalamus, an egg-shaped area of the brain.

“Internal states are known to affect sensory perception and processing, but this was generally thought to occur in the cortex or thalamus,” Chinfei Chen, one of the researchers who carried out the study, told Medical Xpress. “One of our previous studies revealed that arousal can suppress certain visual information channels at an earlier stage of the visual pathway–at the connection between the mouse retina and the thalamus, before the information even reaches the brain. This form of ‘filtering’ of information suggests a very efficient means of processing only relevant information.”