Menu

Blog

Archive for the ‘neuroscience’ category: Page 112

Feb 22, 2024

Fruit fly’s complex symphony of vision

Posted by in category: neuroscience

An orchestra of complex neuronal networks performs a symphonic masterpiece called vision – an exciting field for neurobiologists like Alexander Borst, director at the Max Planck Institute for Biological Intelligence. In his department’s latest study, the scientists found a microcircuit which inverts excitatory to inhibitory signals and is thus able to transform a single type of neuronal input for multiple purposes. The discovery of this microcircuit is an important puzzle piece for the better understanding of the visual process of the fruit flies Drosophila and ultimately of vision itself.

Vision is one of the most important senses in humans. Accordingly, a large part of the brain is dedicated to processing visual information. In order to compute visual information quickly and accurately, a multitude of neuronal networks must perform a complex interplay — which fruit flies can help us to understand. Surprisingly, besides the obvious differences between the eyes of humans and fruit flies, many parallels can be found in the way how their brains process visual information. Since the visual system of flies is very efficient but significantly less complex than ours, it’s not surprising that this is one of the best understood neuronal network in neuroscience.

In the flies’ visual system, a cascade of cells is responsible to transform light information into direction-specific signals. T4 cells, for example, respond to moving bright edges (ON-pathway), while T5 cells only respond to moving dark edges (OFF-pathway). Both, T4 and T5 cells, have four subtypes that are tuned to the four cardinal directions (front-to-back, back-to-front, upwards and downwards). This means that each neuron only reacts to a specific direction of visual motion, their so-called preferred direction, while showing little reaction when stimulated by a moving edge in other directions (= null direction).

Feb 22, 2024

Survival Chances For Cardiac Arrest During CPR

Posted by in categories: biotech/medical, health, neuroscience

According to a study published in the BMJ, a person’s chance of surviving cardiac arrest while receiving cardiopulmonary resuscitation (CPR) in a hospital is 22%, but that declines rapidly after only one minute to less than 1% after 39 minutes. The likelihood of leaving with no major brain damage is similar, declining from 15% after one minute of CPR to less than 1% after 32 minutes without a heartbeat.

Only around 25% of patients survive to hospital discharge after being admitted to the emergency department for cardiac arrest. This common catastrophic medical emergency with a high mortality rate is an important public health issue, affecting around 300,000 adults every year in America alone. Unfortunately, studies have shown that long resuscitation times are linked to lower odds of survival, but there are no specific recommendations on when to stop resuscitation.

Continue reading “Survival Chances For Cardiac Arrest During CPR” »

Feb 22, 2024

A light touch: Changing the way we treat traumatic brain injury

Posted by in categories: biotech/medical, health, neuroscience

Contrary to popular perception, traumatic brain injury (TBI) is not the reserve of car accidents and punishing contact sports; it’s surprisingly common. Up to 50 million new cases of traumatic brain injury are registered each year worldwide. Notably, 80% of TBI occurs in low-to middle-income countries, and it is also the leading cause of death and disability in young adults. Overall, the global economic burden of TBI is estimated at 400 billion USD.

Minimising the devastating effects of TBI doesn’t rely solely on reducing the risk of an injury; it’s also essential to improve treatment after one has happened. For that, physiological real-time monitoring of vital signals is critical. One inventor has made it his mission to create devices that can do this accurately, easily, anywhere, and what’s more, they are also non-invasive.

Professor Arminas Ragauskas is a founder and director of the Health Telematics Science Institute at Kaunas University of Technology in Lithuania, which develops innovative industrial and physiological measurement and process monitoring technologies. He is particularly known for his work on non-invasive intracranial pressure and cerebral blood flow autoregulation measurement devices. He was also the national coordinator of the CENTER-TBI project, funded by the European Commission and the EU industry, with a budget of 40 million EUR, and focused European efforts to advance the care of patients with traumatic brain injury.

Feb 21, 2024

Watch: Scientists create fascinating “brain movies” using neuroimaging data

Posted by in categories: biotech/medical, entertainment, neuroscience

Have you ever imagined listening to the brain’s activity as it unfolds in real-time? Researchers from Columbia University have pioneered a technique that transforms complex neuroimaging data into a captivating audiovisual experience, akin to watching a movie with a musical soundtrack. This novel approach allows scientists to ‘see’ and ‘hear’ the brain’s intricate workings, offering fresh insights into its behavior during various tasks.

The details of their work have been published in the journal PLOS One.

The motivation behind this study stems from a growing challenge in neuroscience: the vast amount of data generated by advanced brain imaging techniques. Technologies like functional magnetic resonance imaging (fMRI) and wide-field optical mapping (WFOM) capture the dynamic, multi-dimensional activities of the brain, revealing patterns of neurons firing and blood flow changes.

Feb 21, 2024

How entropy and equilibrium can help explain consciousness

Posted by in category: neuroscience

Thinking about consciousness from the perspective of a physicist may be key to figuring out whether it is a single phenomenon or a collection of discrete states.

By Karmela Padavic-Callaghan

Feb 21, 2024

Brain Activity Now Watchable and Listenable

Posted by in categories: biotech/medical, media & arts, neuroscience

Summary: Researchers developed an innovated a technique to convert complex neuroimaging data into audiovisual formats. By transforming brain activity and blood flow data from behaviors like running or grooming in mice into synchronized piano and violin sounds, accompanied by video, they offer an intuitive approach to explore the brain’s intricate workings.

This method not only makes it easier to identify patterns in large datasets but also enhances the understanding of the dynamic relationship between neuronal activity and behavior. The toolkit represents a significant step forward in neuroscientific research, enabling scientists to intuitively screen and interpret vast amounts of brain data.

Feb 21, 2024

Sweeping chronic fatigue study brings clues but not clarity to mysterious syndrome

Posted by in categories: biotech/medical, neuroscience

“Megaworkup” revealed brain and immune differences in a small patient group.

Feb 21, 2024

A Boost in Dopamine During Adolescence Permanently Amplifies Impulsivity and Aggression

Posted by in categories: biotech/medical, neuroscience

Drugs blocking dopamine transporters may be harmful for healthy teens but helpful for those with pathological dopamine hypofunction.

In a breakthrough finding researchers at Columbia University Irving Medical Center identified a sensitive developmental period during adolescence that impacts adult impulsivity, aggression, and dopamine function in mice.

As organisms grow from embryo to adult, they pass through sensitive time periods where developmental trajectories are influenced by environmental factors. These windows of plasticity often allow organisms to adapt to their surroundings through evolutionarily selected mechanisms.

Feb 20, 2024

NASA Sponsored Researcher Suggests It Might Be Possible to Change the Laws of Physics

Posted by in categories: engineering, neuroscience, physics

In an extremely cosmic–brain take, University of Rochester astrophysics professor Adam Frank suggests that a civilization could advance so much that it could eventually tinker with the fundamental laws of physics.

It’s a mind-bending proposition that ventures far beyond the conventional framework of scientific understanding, a reminder that perhaps we should dare to think outside the box — especially as we continue our search for extraterrestrial civilizations.

If a civilization were to be able to change the laws of physics, “the very nature of energy itself, with established rules like energy conservation, would be subject to revision within the scope of engineering,” Frank, who is part of the NASA-sponsored Categorizing Atmospheric Technosignatures program, wrote in an essay for Big Think.

Feb 20, 2024

Functional brain changes linked to depression exposure

Posted by in category: neuroscience

😔 🧠 🔍


Study reveals that exposure to depression correlates with significant functional brain changes, varying by depression definition, without notable structural differences, emphasizing the need for precise diagnostic criteria to enhance treatment outcomes.